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Chapter 1

Computation

Computation is the evaluation of a given expression, usually by
means of computer. For example, one could compute the addition
3 + 5 and arrive at 8. With a few basic operators and a number
system, the entirety of arithmetic is computable; however, there
are more complex structures which cannot be discussed under these
limitations.

For the sake of working with more complex structures, we rely
upon abstraction. Let’s look at an example. You have undoubtedly
seen an expression like the following in a mathematical setting.

Figure 1.1:

f(x) = x2

The object f(x) is more complex than a string of primitive oper-
ators and numbers because it accepts argument to its computation.
Objects like this one are formed by a process known as abstraction.
Along with abstraction, the other fundamental aspects of compu-
tation are variables and application. A variable is a given token
within an expression intended for substitution, and application is
the reduction of an expression from an abstracted form. As a more
concrete example, in Figure 1.2, we have the abstraction of the
expression x2 in which x is a variable. We then apply f(x) to 3.

7



8 Chapter 1. Computation

Figure 1.2:

f(x) = x2

y = f(3) =⇒ y = 9

1.1 A Foundational Grammar

We have discussed the features necessary for a language to facili-
tate computation; however, we have so far relied upon the familiar
notation of mathematics. We will now switch to a language defined
specifically as a foundation for computation. The Lambda Calculus
is a language consisting of variables, abstraction, and application.
The notation can be summarized by the Backus-Naur definition in
Figure 1.3.

Figure 1.3:

< expr > ::= λ < var > < expr >

| (< expr >) < expr >

| < var >

BNF is perfect for the description of languages, both expressive
and precise. In describing the Lambda Calculus, an expression
(expr) is said to be one of three forms. The first form is a lambda
followed by a variable, its argument, and finally followed by another
expression. The next is simply the application of one expression to
another, and the last is simpe variable reference.

These are the only forms, no primitive data-types are provided.
However, we will for now take its potential to represent data like
numbers as granted. Let’s explore this notation.

The expression in Figure 1.4 defines an identity function and
then applies it to the number 3. The result, of course, is 3.

In the notation of traditional math, we would have defined this
function prior to its invocation. Such a form would appear as in
Figure 1.5 but achieve the same behavior.

The Lambda Calculus is a fully-versatile language; however, it
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Figure 1.4:

(λ x x)3

Figure 1.5:

f(x) = x

f(3)

is what some describe as a Turing tarpit. Alan Perlis describes a
Turing tarpit as a language ”in which everything is possible but
nothing of interest is easy.” Despite this nature of the Lambda
Calculus, we will be forming quite complex programs throughout
this book on its foundation. We will, in a sense, climb out of its
tarpit by means of abstraction. In order to do so, we will build up a
scaffolding of abstraction, building layer upon layer as we construct
an edifice of procedures.

1.2 A Symbolic Language

In the previous section, we utilized numbers within the Lambda
Calculus; however, we do not accept them as primitive. Rather,
we will need to define them in terms of the Lambda Calculus and,
of course, the ability to refer to numbers by name would be helpful.
For this reason, amongst many others, we will begin by defining
a new, symbolic language on top of the Lambda Calculus, adding
a layer of abstraction to our computation. Our definitions of this
language’s semantics will be written for a human reader that its
code can be translated by hand into the Lambda Calculus. How-
ever, we will define in this language an interpreter of itself, freeing
us of manual translation.

Our layer of abstraction will be a uniform language of Symbolic
Expressions which is a dialect of the language called Lisp. These
symbolic expressions are parentheses enclosed arrays of symbols,
taking on different meanings based on their matching of patterns
which we will define.
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Figure 1.6 displays an example.

Figure 1.6:

(+ 2 3)

The expression in Figure 1.6 evaluates to 5. In this case our
expression is a function application receiving two numbers as argu-
ments. This syntax is very simple, uniform and legible. Addition-
ally, as you will see later on in this book, it is very easily interpreted
by program.

1.3 Symbolic Expressions

The language into which we are entering is one of symbolic ex-
pressions. All of our expressions will take the form defined by the
grammar in Figure 1.7. This uniformity will make its definition in
terms of Lambda Calculus far easier, and simplify its later inter-
pretation or compilation.

Figure 1.7:

< expr > ::= < sexpr > | < atom >

< sexpr > ::= (< list >)

< list > ::= < expr > | < list > < expr >

1.4 Defining Semantics

1.4.1 Primitive Forms

Now, these Symbolic Expressions or S-Expressions can take any
of a multitude of forms. Of these, we will define meaning for
forms of interesting patterns. We begin, unsurprisingly, with an
S-Expression which serves to create lambdas. All forms matching
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Figure 1.8:

(lambda (var) expr) =⇒ λvar expr

(lambda (var rest . . . ) expr) =⇒ λvar (lambda rest expr)

the patterns which we discuss will be converted to the provided
form, labeled as the consequent.

Essentially, we are saying that any expression of the given form
should be a function of the provided arguments bearing the pro-
vided expression.

Additionally, we provide a default case for our S-Expressions.
Should certain expression match none of our provided patterns, we
will default to function invocation. In other words, in Figure 1.9
we define a pattern for those values which match no other patterns.

Figure 1.9:

(fn val) = (fn)val

(fn val rest . . . ) = ((fn)val rest)

The Lambda Calculus has now been fully implemented in our
symbolic forms; however, we will add many more features for the
sake of convenience. After all, our goal was to add abstraction, not
move a few symbols around!

1.4.2 Evaluation of Symbolic Forms

Before we continue, we’ll look at some examples of our syntax as im-
plemented so far. In evaluating a Lambda Calculus expression, or
in this case, derived form, the single operation necessary is known
as reduction. Reduction is conversion of an expression of function
application to a new expression, one derived by substitution of the
argument value.

To begin gaining familiarity with our language, we look at a
function of two variables. The function in Figure 1.10 performs f
on a value x, and then f once more on the resultant value.
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Figure 1.10:

(lambda (f x) (f (f x)))

Now we will look at a similar form, a function of three variables.
In Figure 1.11 is a function of values g, f , and x. The result is
similar to that of the one in Figure 1.10, but this time replacing
(fx) with (gfx).

Figure 1.11:

(lambda (g f x) (f (g f x)))

So far we have covered some examples of Symbolic Expressions,
but all of them have been of the lambda definition form. Further-
more, they have lacked any concrete meaning. To explore the addi-
tional notation we have defined, we will apply the former expression
to the latter, which expands into Figure 1.12.

Figure 1.12:

((lambda (g f x) (f (g f x))) (lambda (f x) (f (f x))))

This expression appears quite complex, so let’s use the afore-
mentioned reduction operation to simplify it. Recall from our defi-
nition of lambda that a function of multiple variables evaluated for
one results in a function of one-less variable than the initial form.
Hence we begin by substituting our argument for g throughout the
expression; later steps are of a similar nature.

That looks much better! What we have arrived at is only
slightly different than our initial function of f and x. The only
change was the number of times that f was applied. We have ex-
plored the reduction of a symbolic expression to a result; however,
this result is far from tangible.
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Figure 1.13:

((lambda (g f x) (f (g f x))) (lambda (f x) (f (f x))))

=⇒ (lambda (f x) (f ((lambda (f x) (f (f x))) f x)))

=⇒ (lambda (f x) (f (f (f x))))

In order for computation by means of the Lambda Calculus
to render a human-readable result, we will need a notation of ex-
pression exhibited by function definitions. That means that, for
example, the function (lambda (a) (a (a (a a)))) could serve to
communicate the number four.

The expressive power of this notation is clear; however, appli-
cation of a function to itself as in (aa) is very rarely appropriate,
and so we will slightly expand our expression of four to serve a
more concrete purpose within the language. We now expand our
numeric function representing some number n to accept two pa-
rameters, and return the application of the first parameter n times
to the second parameter. Hence, the number four would look like
the function in Figure 1.14.

Figure 1.14:

(lambda (f n) (f (f (f (f n)))))

This notation, of course, translates just as well into an expres-
sion of any number, given that both zero and the successor function
can be easily defined. The number three would look like the func-
tion in Figure 1.15.

Figure 1.15:

(lambda (f n) (f (f (f n))))

Hopefully these examples have given you a feel for how this
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syntax can work, and maybe even an early sense of how useful
functions will emerge from the Lambda Calculus.

1.5 Foundations in Lambda Calculus

To accompany our syntactic constructs, we will need to define some
forms in the Lambda Calculus, especially data-types and their ma-
nipulations. Our definitions will be illustrated as equalities, like
id = λxx; however, syntactic patterns will be expressed as impli-
cations. Recall that in Lambda Calculus there are only functions,
no literals or primitive data-types. To combat this apparent short-
coming of the language, we will need to give data-types of interest a
functional form. The examples of the prior section were a preview
into how our conceptualization of numbers will behave.

1.5.1 Numbers

Numbers are a rather fundamental data-type, especially in modern
computing. Additionally, they are in most other languages seen as
atomic and primitive. However, we must provide a definition for
the behavior of numbers in our language constituent of functions.
We begin with a means of defining all natural numbers inductively,
via the successor.

Figure 1.16:

0 = λ f λ x x

succ = λ n λ f λ x (f)((n)f)x

Our definition of numbers is just like the examples from the
previous section. Notice that 1, for example, could be easily de-
fined as 1 = (succ 0), as could any positive integer with enough
applications of succ. Later on when we return to syntactic features
we will define all numbers in this way; the numbers will take on
their usual form as a string of decimal digits.

Numbers are our first data-type. Their definition is iterative
in nature, with zero meaning no applications of the function f to
x. We now will define some elementary manipulations of this data-
type, i.e., basic arithmetic. The definitions in Figure 1.17 are pretty
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straightforward; nearly all of them consist exclusively of iterative
application of a more primitive function to a base value.

Figure 1.17:

+ = λ n λ m ((n)succ)m

∗ = λ n λ m ((n)(sum)m)0

pred = λ n λ f λ z ((((n) λ g λ h (h)(g)f)λ u z)λ u u)

− = λ n λ m ((m)pred)n

Addition merely takes advantage of the iterative nature of our
numbers to apply the successor n times, starting with m. In a
similar manner, multiplication applies addition repeatedly starting
with zero. The predecessor is much more complicated, so let’s work
our way through its evaluation.

We’ll begin our exploration of the pred function by looking at
the value of two. Since two equals (succ)(succ)0 we can work out
its Lambda form, or simply take as a given that is the function in
Figure 1.18.

Figure 1.18:

2 = λ f λ x (f)(f)x

Now we can evaluate pred for this value. pred has been defined
already, but let’s briefly render it in the more succinct form of
Figure 1.19. The form in Figure 1.19 is very easily translated back
to Lambda Calculus and should serve to cut through at least a
portion of the complexity of the definition.

Figure 1.19:

pred = λ n λ f λ z ((λ g λ h (h)(g)f)n λ u z) λ u u
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With the rendering of the definition displayed in Figure 1.19 in
mind, we aim to reduce an application of pred to 2 to a result.

Figure 1.20:

(λ n λ f λ z ((λ g λ h (h)(g)f)n λ u z) λ u u) 2

(λ f λ z ((λ g λ h (h)(g)f)2 λ u z) λ u u)

Now that we have reduced the expression to the form of our
prior rendering of pred, we expand it into a true Lambda Calculus
form, as seen in Figure 1.21 and continue our reduction.

Figure 1.21:

(λ f λ z (((λ g λ h (h)(g)f) (λ g λ h (h)(g)f)) λ u z) λ u u)

In the conversions of Figure 1.22, as in all, our reductions will
need to take place in a right-to-left direction when evaluating ex-
pressions of the form (f)(g)x. Recall that our goal here is to reduce
a complex form to simplistic result, and we have already made sig-
nificant progress.

Figure 1.22:

(λ f λ z ((λ g λ h (h)(g)f) (λ h (h)(λ u z)f)) λ u u)

(λ f λ z ((λ g λ h (h)(g)f) (λ h (h)z)) λ u u)

(λ f λ z (λ h (h)(λ h (h)z)f) λ u u)

(λ f λ z (λ h (h)(f)z) λ u u)

The forms in Figure 1.22 were all mere substitutions, as should
be expected. If any were unclear, try working those steps out in
a notebook. We are now finally ready to reduce the application of
the identity (lambda u u) and achieve our final result.

Our result, seen in Figure 1.23 was a single application of f to
z, i.e., one. Hence you have seen that at least in this case, the pred



1.5. Foundations in Lambda Calculus 17

Figure 1.23:

λ f λ z (λ u u)(f)z

λ f λ z (f)z

function did its job. Achieving an intuitive grasp of how it works
is unfortunately not as straight-forward. If you wish to, keep in
mind that λuz maps a value to the numeric starting point, and
λuu leaves an expression alone. So the decrement occurs by the
setting of the origin later than it would normally occur.

With our complex definition of the predecessor complete, sub-
traction is trivial. Once again we perform an iterative process on
a base value, this time that process is pred.

1.5.2 Booleans

Having defined numbers and their manipulations, we will work on
booleans. Booleans are the values of true and false, or in our syn-
tax, t and f . Booleans are quite necessary in expressing conditional
statements; thus we provide the concomitant if function. These
values will give us great power in their ability to branch results
to a function, in a sense constructing piece-wise functions. It is
by this ability that we are able to form a multitude of inductive
definitions, as well as other important forms. Finally, we build a
cond syntax which will attempt multiple conditionals in sequence.

Figure 1.24:

#t = λ a λ b (a)id

#f = λ a λ b (b)id

if = λ p λ t λ f ((p)λ t)λ f

(cond ((a b))) =⇒ (if a b #f)

(cond ((a b) . . . )) =⇒ (if a b (cond . . . ))

The key to our booleans is that they accept two functions as
parameters, functions that serve to encapsulate values, of which
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one will be chosen. Once chosen, that function is executed with
the arbitrarily-chosen identity as an argument. This method of
wrapping the decision serves as a means of lazy evaluation, and is
fully realized in the lambda-underscores wrapping the branches of
an if statement.

Now, since of course no boolean system is complete without
some boolean algebra, we define and and or. These functions per-
form the operations you would expect; (andab) is true only when
both a and b are true, but (orab) is true if either argument is true.
Their definitions follow easily from our if function. Keep in mind
that both of these functions operate only on booleans.

Figure 1.25:

and = λ a λ b (((if)a)b)#f

or = λ a λ b (((if)a)#t)b

With boolean manipulation and conditionals in hand, we need
some useful predicates to utilize them. We define some basic pred-
icates on numbers in Figure 1.26. eq will be very useful in later
developments; it is one of McCarthy’s elementary functions.

Figure 1.26:

zero? = λ n ((n)x#f)#t

leq = λ a λ b (zero?)((−)m)n

eq = λ a λ b (and (leq a b) (leq b a))

The predicates in Figure 1.26 serve to identify traits of a given
number or given numbers. zero? is true when a number is zero, leq
is true when the first number is less than or equal to the second,
and eq determines whether two numbers are equal.

1.5.3 Pairs

Finally we reach the most important part of our S-Expressions,
their underlying lists. To say that these expressions have an un-
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derlying list means that every Symbolic Expression is inherently
a list of other expressions, whether atomic or symbolic; these lists
can be modeled by a list data-type. To construct lists we will opt
for a sort of linked-list implementation in our lambda definitions.
We begin with a pair and a nil definition, each readily revealing
their type by opting for either the passed c or n function. The
function definitions are displayed in Figure 1.27.

Figure 1.27:

cons = λ a λ b λ c λ n ((c)a)b

nil = λ c λ n (n)id

cons constructs a pair when given two values, and accepts a
function which will receive the two items to manipulate. nil on
the other hand serves as a sort of empty pair, and instead fires the
second provided function to identify itself as such.

Now, once again we follow a defined data-type with its manip-
ulations. Just as did McCarthy, we will provide car and cdr as
additional elementary functions, with pair? and null? serving as
complements to each other in determining the end of a list. car
returns the first value of a pair, and cdr the second. Their names
are quite historical and refer to address access of a pair in memory,
but you can just think of them as /kαr/ and /kuder/.

Figure 1.28:

car = λ l (((l)λ a λ b a)id)

cdr = λ l (((l)λ a λ b b)id)

pair? = λ l (((l)λ λ #t)λ #f)

null? = λ l (((l)λ λ #f)λ #t)

car provides that pair with a pair handling function that re-
turns the first element, and an arbitrary nil handling function.
Similarly, cdr provides a pair handling function returning the sec-
ond element. pair? and nil? are logical opposites to each other,
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each provides a pair- and nil-handling function, returning either t
or f as is appropriate.

Together, these functions are sufficient for designing a list im-
plementation. The implementation that comes naturally is known
as a linked-list. A linked-list is essentially either a pair of both an
element and a linked-list or merely nil. If that is unclear, think of
a tree with a fractal structure. The tree consists of a leaf and a
child tree, which in turn has both leaf and child tree, until the tree
ends with nil for its child tree.

1.5.4 Recursion

Our last definition will be a bit more esoteric, or at least complex.
We define a Y Combinator. This function, Y , will allow another to
be executed accepting itself as an argument. The Y Combinator
refers to a specific combinator, but you have already seen another.
The I Combinator is defined as λxx in the Lambda Calculus. The
key to combinators is that they use function application alone to
return a value. Although the Y Combinator can be expressed with-
out using abstraction in the function body, we will opt to define
it in a way making use of lambda definitions to present a simpler
definition; the definition follows.

Figure 1.29:

Y = λ f(λ x (f)(x)x) λ x (f)(x)x

Let’s work through an example. Let’s say you want to define
a function that will evaluate the factorial of a number n. Well
then the fundamental idea would be to do something like the the
function in Figure 1.30.

Figure 1.30:

fact = (lambda (n) (∗ n . . . ))

Well the question remains, what should be present instead of the
dots? Nothing we have discussed would give any help in answering
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that, besides the Y Combinator. If you recall from Mathematics,
the factorial has an inductive definition like that in Figure 1.31.

Figure 1.31:

0! = 1

n! = n ∗ (n-1)!

Our task is to translate this into our Symbolic Language; how-
ever, we wish to generalize this idea a bit, not to add a special
expression type for every inductive definition we think of. Hence
our duty is to make a factorial function which is self-aware, if you
will. The function in Figure 1.32 is a rough form of the concept.

Figure 1.32:

fact = (lambda (fact n) (∗ n (fact (pred n))))

There remains one issue! We have not handled the base case
present in our prior definition. To achieve this in the Lambda
Calculus we will utilize an if statement; this use case was alluded
to earlier.

Figure 1.33:

fact = (lambda (fact n)

(if

(zero? n)

(succ 0)

(∗ n (fact (pred n))))

This is a complete realization of the definition, but there re-
mains one problem. How are we to pass fact the value of fact?
This is when the Y Combinator comes in. The invocation of
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(Y fact) will form a factorial function, aware of itself for the sake
of recursion, accepting the single variable n.

1.5.5 Conclusion

We have now laid a good foundation upon which our Symbolic
Expressions can exist. As should be expected, lists will be our
primary data-structure in our language of S-Expressions.

1.6 Special Forms of S-Expressions

1.6.1 Numbers

Returning to our prior definition of numbers, we will now define ar-
bitrarily long strings of decimal digits. As you can see, the patterns
in Figure 1.34 define numbers by either matching single digits and
defining them as a successor, or by matching leading digits and a
final digit and evaluating them separately.

Figure 1.34:

1 = (succ 0)

2 = (succ 1)

. . .

9 = (succ 8)

ten = (succ 9)

d . . . 0 = (mul d . . . ten)

d . . . 1 = (sum (mul d . . . ten) 1)

. . .

d . . . 9 = (sum (mul d . . . ten) 9)

Hopefully the rules in Figure 1.34 are a clear embodiment of our
decimal number system. Place value is achieved by two measures,
(a) inductive definition, and (b) multiplication by ten. This pattern
of recursive definition and symbolic pattern matching will be at the
heart of our language constructs.
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1.6.2 List Literals

We define our lists inductively based on the pair-constructing cons
function we defined earlier. We choose to name this function quote
because it is treating the entire expression as a literal, rather than
as a symbolic expression. More importantly, the syntax of passed
lists is indistinguishable from a regular S-Expression, hence we are
utilizing the quoted form of such an expression.

The definition in Figure 1.35 has a rather sensitive notation.
Quotes show that an atomic value, that is, a value referred to in
our grammar as < atom > or more importantly, a value referred
to as < var > in our grammar of the Lambda Calculus, is being
matched. This is unique from most cases in which a portion of a
pattern is being labeled by a variable. Additionally, the italicized
ab... is meant to label the first letter and rest of a string as a and
b, respectively.

Figure 1.35:

(quote (a)) =⇒ (cons a nil)

(quote (a rest . . . )) =⇒ (cons (quote a) (quote (rest . . . ))

(quote a rest . . . ) =⇒ (cons (quote a) (quote (rest . . . )))

(quote ”0”) =⇒ 0

. . .

(quote ”99”) =⇒ 99

. . .

(quote ”ab . . . ”) =⇒ (cons a (quote b . . . ))

(quote ”a”) =⇒ (cons 97 nil)

. . .

(quote ”z”) =⇒ (cons 122 nil)

In addition to defining the quote function, we will provide a
shorthand for the operation. So often will we need to define list
literals that it makes perfect sense for us to make it as brief as
possible.

Quoted forms will come up often in writing list literals, atomic
values derived from strings, i.e., atoms, and forming more complex
data-structures from lists such as tables.
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Figure 1.36:

′a =⇒ (quote a)

1.6.3 Predicate for Atoms

We will at times need a way of telling whether a given value is a list
of an atom; however, because of our decision to use the untyped
lambda calculus, we do not have such abilities innately. Given
the nature of these definitions, namely, since they are definitions
intended for human execution, we can define syntax in terms of
pattern-matching. Hence we are able to provide the following def-
inition for the atom? function.

Figure 1.37:

(atom? ′(a b . . . )) =⇒ #f

(atom? ′a) =⇒ #t

1.6.4 Equality

We have built up an array of atomic values, and a way of keeping
them literal. Now we need a way of recognizing them, by means of
equivalence. eq already solves this problem for numbers, but not
for other quoted atoms. We generalize eq to all expressions in our
definition of equal?.

The definition in Figure 1.38 is inductive in nature. It provides
a base case in which equivalence is determined by the Lambda
Calculus definition of eq, and an inductive step in which lists are
equivalent only if their constituents are equal.

1.6.5 Variable Definition

Now we add some syntactic sugar that will make it easier to store
values that will be used in an expression. let and let∗ set a single
value and a list of values, respectively, to be utilized in a given
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Figure 1.38:

(equal? (a b . . . ) (c d . . . ))

=⇒ (and

(equal? a c)

(equal? (b . . . ) (d . . . )))

(equal? a b) =⇒ (eq a b)

expression. letrec takes this idea in another direction, performing
the Y-Combinator on a passed function to prepare it for recursion
in the passed expression.

Figure 1.39:

(let var val expr)

=⇒ ((lambda (var) expr) val)

(let ∗ ((var val)) expr)

=⇒ (let var val expr)

(let ∗ ((var val) rest . . . ) expr)

=⇒ ((lambda (var) (let ∗ (rest . . . ) expr)) val)

(letrec var fn expr)

=⇒ (let var (Y (lambda f fn)) expr)

Once again we provide an inductive definition, and here we
finally utilize the Y Combinator we discussed with regard to recur-
sive functions.

1.6.6 Conclusion

We have formed a basic language consisting of Symbolic Expres-
sions defined by the Lambda Calculus. All of our expressions are
reducible to Lambda forms, yet clearer or more concise given their
symbolic form. This language will be utilized for expression of all
sorts of computational ideas, including algorithms, simulators, and
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interpreters. Our choice of syntax was purely aesthetic; Lambda
Calculus is sufficient for communication with machine, however,
our language of Symbolic Expressions is far friendlier to a human
reader. This motivation reveals the additional motivation for our
construction of this language, to form a clear, formal, extensible,
and uniform means of communicating ideas.



Chapter 2

Designing Primitive
Procedures

2.1 Introduction

We have formed a language constituent of Symbolic Expressions.
Additionally, we have an array of useful and primitive Lambda
Calculus functions at our disposal. Now in order to build expressive
and powerful programs, it will be helpful to define a library of useful
Symbolic Functions for manipulation of the various data-types we
have formed by abstraction.

2.2 Predicates

We begin with a trivial example, a boolean inverter. Our definition
is listed as an S-Expression because when we are ready to make use
of it, we will include that pair in a call to let∗. The name of the
function is the first element, because this is the variable to which
it will be assigned. The actual function definition is very familiar.
We form a lambda of a single function that results in conditional
behavior; if x is true, it results in f , but if x is false, it results in t.

Now we add to our current assortment of numeric predicates
the functions < and >. These predicates are lambdas accepting
two values, that they may be compared. With less-than-equal-to
already defined as leq, both of these relations are trivial to define.

An important convenience to note in the forms of Figure 2.2, is
their nature given their Lambda Calculus definitions. That is, since
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Figure 2.1:

(not (lambda (x) (if x #f #t)))

Figure 2.2:

(< (lambda (x y) (and (leq x y) (not (eq x y)))))

(> (lambda (x y) (not (leq x y))))

they compile down to a curried form of a function, in other words,
a function returning a function, they are very nice to work with.
Let’s look at an example form and apply appropriate reductions to
get a better view of this function’s nature.

Figure 2.3:

(> 2)

=⇒ ((lambda (x y) (not (leq x y))) 2)

=⇒ (lambda (y) (not (leq 2 y)))

What we see is that when a single value is passed, we achieve a
convenient function ready to compare in terms of that parameter.
This may seem obvious, familiar, or redundant, but the convenience
of this fact should not be taken for granted. This phenomenon is
known as currying; it can prove very useful in providing clearness
to your expressions; our look at > was only an example of what is
going on in all of the functions we discuss.

This ability to supply the arguments of a function one at a time
makes for very legible code. Below is an example of an inductive
definition utilizing this functionality. The predicate is < with the
first argument supplied as two, the step is the pred function, and
the combinator is multiplication.

This reads very well, as ”perform induction while greater than
2 from 6 by means of decrement combining with multiplication”,
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Figure 2.4:

(letrec

induct

(lambda

(induct pred num step combo)

(if

(pred num)

num

(combo num (induct pred (step num) step combo))))

(induct (> 2) 6 pred ∗))
=⇒ 720

i.e., find the factorial of 6. Let’s look at another instance of this,
taking advantage of the interchangeability of the definition, and
once again of partial function application. This time we induce
addition up to and at five, stepping by two in each step up from
one.

Figure 2.5:

(letrec

induct

. . .

(induct (< 5) 1 (+ 2) +))

=⇒ 16

Our answer coincides with what you would expect, the sum of
odd numbers one through seven. Hopefully you feel that our lan-
guage displays complexity well. The example in Figure 2.5 handled
a very generic problem type elegantly and concisely. It is thanks to
our adding of abstraction as we go that we are able to make these
creations both clear and versatile, and ones in which the creator
can take pride.
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Lastly we provide predicates to determine whether a given num-
ber is even or odd. This function is once again very easy given our
convenient Lambda Calculus primitives. The two functions in Fig-
ure 2.6 simply check for a specific value of the modulus division by
two applied to a number; this is the essence of parity.

Figure 2.6:

(odd? (lambda (x) (eq (mod x 2) 1)))

(even? (lambda (x) (eq (mod x 2) 0)))

Use cases for these two predicates will arise later, but for now
they are good at their simple duties, determining parity.

2.3 Higher-Order Functions

In writing clear and concise expressions, it is often useful to have
at your disposal higher-order functions (HOF ), that is, functions
that (a) return functions, (b) accept functions as arguments, or (c)
do both a and b.

Hopefully you caught something odd in what I just said, the fact
that everything, hence any possible argument or resultant value,
is a function! However since we have defined some primitive data-
types, I am referring to non-data-symbolizing functions. This may
seem a fine line, but you will often see this terminology tossed
around, so you may as well utilize it even in when in the purest of
functional languages.

We begin with a couple of type (c) HOFs. The first of the
functions in Figure 2.7 serves to flip the argument ordering of a
given function, and the second composes two functions.

Figure 2.7:

(flip (lambda (func a b) (func b a)))

(compose (lambda (f g) (lambda (arg) (f (g arg)))))
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The function flip is very convenient when aiming to apply only
the second argument of a function, leaving the other free. The de-
sign of flip is quite simple, it merely accepts a function, then two
arguments, and returns application of them in reverse order. De-
spite the simplicity of its operation, it can very greatly reduce the
complexity of an expression. As an example, look at the definition
of a singleton constructori in Figure 2.8, that is, a creator of a pair
with a single element.

Figure 2.8:

((flip cons) nil)

compose allows the results of various manipulations to be piped
from one to another. A beautiful example of this is a linear function
creator. Below is the function accepting slope and y-intercept as
its two arguments.

Figure 2.9:

(lambda (m b)

(compose

(+ b)

(∗ m)))

One of the most important HOFs is defined next. fold serves to
accumulate a list of values into a single resultant value, based on a
function of combination and a starting value. Note that this func-
tion is recursive and will be provided using letrec. Other functions
accepting their name as the first argument should be assumed to
follow the same practice.

Our definition of fold is as a manipulator of a list returning an
accumulated value at the end of a list, and at other points recursing
with the cdr of the list and an accumulator as determined by the
passed function. If the meaning of fold is still unclear to you,
consider some of these examples.
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Figure 2.10:

(fold (lambda (fold func accum lst)

(if (null? lst)

accum

(fold func (func accum (car lst)) (cdr lst)))))

Figure 2.11:

(fold + 0 ′(1 2 3)) =⇒ 6

(fold ∗ 0 ′(1 2 3 4)) =⇒ 24

As you can now see, the folding of an infix operation a • b over
a sequence a, b, c, ... is the nested application of the operation, or
the effect exhibited by Figure 2.12.

Figure 2.12:

( . . . ((a • b) • c) . . . )

As a complement to fold we define reduce. reduce is just like
fold except right-associative; Hence the function applications are
nested just like the cons basis of these lists.

Our definition of reduce is as a manipulator of a list returning
an accumulated value at the end of a list, and at other points
returning a manipulation of a recursion with the cdr, manipulated
by the passed function. If we do an expansion of an infix operator
for reduce as we did for fold we achieve something like the visual
in Figure 2.14 when dealing with a list ..., x, y, z

Together reduce and fold are sufficient basis for any iterative
process. Now we will provide an inverse operation for constructing
a list given a construction criterion. unfold serves to invert a
folding.



2.3. Higher-Order Functions 33

Figure 2.13:

(reduce (lambda (reduce func end lst)

(if (null? lst)

end

(func (car lst) (reduce func end (cdr lst))))))

Figure 2.14:

( . . . (x • (y • z)) . . . )

Figure 2.15:

(unfold (lambda (unfold func init pred)

(if (pred init)

(cons init nil)

(cons init (unfold func (func init) pred)))))
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To clarify the distinction between fold and reduce, we display
the manner in which they can be thought of as opposites.

Figure 2.16:

(fold (flip cons) nil ′(1 2 3)) =⇒ ′(1 2 3)

(reduce cons nil ′(1 2 3)) =⇒ ′(1 2 3)

This examples drives home that the difference between the two
is in direction of association, reduce is the natural operation for
right associative operations and fold for left associative operations.

Together our definitions of fold and reduce are sufficient for
definition of any iterative process. unfold in addition provides us
with a means of constructing arbitrary lists based on constructing
rules. We will now implement a variety of derived iterative forms
based on fold and reduce.

2.4 Reductive Forms

We begin with some extensions to our basic binary operators of
arithmetic and boolean algebra. The structure of these definitions
is similar to that of our early definitions of arithmetic, an iterative
process on a base value; however, in this case the conditions and
multitude of application are determined by a provided list.

All of the following forms, which we will refer to as Reductive
Forms are dependent on fold. fold provides the generic versatile
power to combine a list in an arbitrary way; hence you will see
a variety of operations used in folding, so you may want to think
back to the examples of the nested operator.

We begin with some definitions of arithmetic and boolean ma-
nipulations. The definitions of these forms are intuitive, each with
an infix operator which fits the role very intuitively.

Now we expand our application field in defining some optimiza-
tion functions, min and max. Both of these works by comparing
each element with a running extreme value, swapping if a new ex-
treme is found. The definition of max follows, a simple folding
onto the higher value.

The application of this function to ′(1 5 3 4), for example, would
return 5. Our implementation of min is nearly identical, simply
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Figure 2.17:

(sum (lambda (lst) (fold + 0 lst))

(product (lambda (lst) (fold ∗ 1 lst))

(and ∗ (lambda (lst) (fold and #t lst))

(or ∗ (lambda (lst) (fold or #f lst))

Figure 2.18:

(max (list)

(fold

(lambda (old new)

(if (> old new) old new))

(car list)

(cdr list)))
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changing the criterion of the fold.

Figure 2.19:

(min

(list)

(fold

(lambda (old new)

(if (> old new) old new))

(car list)

(cdr list)))

Next we define some methods that aid in treatment of lists in
their entirety, length and reverse. length is one of the simplest
folds you could define, folding by increment. reverse on the other
hand, is not as obvious in its means of operation; it folds by means
of a swap operation, (flipcons), in this way forming a fully reversed
list.

Figure 2.20:

(length (lambda (lst) (fold (lambda (x y) (+ x 1)) 0 lst)))

(reverse (lambda (lst) (fold (flip cons) nil lst)))

Now we provide a special function for determining associations
in a list meant as a table. The setup of these lists is like the
structure in Figure 2.21, where each element is a list, with the first
element serving as a key, and the second serving as a value.

In determining the association, we fold with the aim of reaching
a value with a key matching that for which we are searching.

assoc is very important in modeling hash-tables, and in general
keeping track of named values. If assoc were applied to the table
displayed prior with banana as a key, it would evaluate to yellow.
Here is the full form, with table referring to the aforementioned
table.
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Figure 2.21:

′((apple red)

(pear green)

(banana yellow))

Figure 2.22:

(assoc (lambda (x list)

(fold

(lambda (accum item)

(if

(equal? item (car x))

(cdr x)

accum)))

#f

list)))

Figure 2.23:

(assoc ′banana table) =⇒ ′yellow
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2.5 List Manipulations

Before we delve too far into manipulation of lists, we will define a
very helpful list constructor as follows.

Figure 2.24:

(list

(lambda (list a)

(if (null? a)

nil

(lambda (rest)

(cons a (list rest)))))

Usage of list is very intuitive. To construct a list, pass each ele-
ment as argument to the list function, ending with nil. Figure 2.25
has an example of usage.

Figure 2.25:

(list 1 2 3 nil) =⇒ ′(1 2 3)

In manipulating a list, there are two basic classes of operations,
(a) mapping a list to a value, and (b) converting one list to another.
We have thoroughly covered the former, starting first with general
forms and then implementing some useful examples. Now we will
move on to the latter.

In mapping one list to another, we will provide two generic
functions. The first, map, will apply a single function to each ele-
ment of a list; the second will filter out items based on a predicate.
These functions are very useful, imagine for example finding a sum
of squares or constructing a list of primes.

Our map implementation works as a reduction with cons; if this
were the extent of the function, the initial list would be returned.
However, each element is passed through the provided function to
result in a list with modified elements. filter takes advantage of
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Figure 2.26:

(map

(lambda (func lst)

(reduce

(lambda (x y)

(cons (func x) y))

nil

lst)))

the same aspect of reduce; however, in its definition it casts away
values not matching a predicate.

Figure 2.27:

(filter

(lambda (pred lst)

(reduce

(lambda (x y)

(if (pred x) (cons x y) y))

nil

lst)))

Let’s look at some examples of map and filter; the extent of
their usefulness was alluded to earlier, but in Figure 2.28 are some
examples to clarify their usage.

The uses of Figure 2.28 were very clear in their meaning, as one
would hope. Now that we have some strong ways of manipulat-
ing a list, we will move on to means of adding elements to a list.
We provide some functions for appending to a list, either a single
element of a list of elements, i.e., concatenation. These functions
serve as nice complements to the two which were defined earlier,
as they allow for expansion to supersets, and the earlier two allow
only for constructing a subset.
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Figure 2.28:

(map (∗ 2) ′(1 2 3)) =⇒ ′(2 4 6)

(filter odd? ′(1 2 3 4 5 6)) =⇒ ′(1 3 5)

Figure 2.29:

(push (lambda (a b) (reverse (cons b (reverse a)))))

(concat (lambda (a b) (fold push a b)))

These list manipulations will prove very useful, and given our
prior functions, were very concise and clear in definition. Below
are some examples of push and concat applications.

Figure 2.30:

(push 4 ′(1 2 3)) =⇒ ′(1 2 3 4)

(concat ′(1 2) ′(2 4)) =⇒ ′(1 2 3 4)

2.6 Conclusion

We have amassed a variety of useful and versatile functions of sym-
bolic expressions. With these in hand, we are ready to build com-
plex and useful programs.



Chapter 3

Simulating Logical
Devices

The key innovation in the study of computation was the develop-
ment of machines for the mechanization of algorithms. Of course,
you are familiar with the idea of devices executing algorithms; how-
ever, the relationship of our exploration of the Lambda Calculus to
such devices may not be immediately evident. In this chapter we
will compose with our symbolic language a simulation of different
logical devices.

3.1 Turing Machines

Having built up our language to a point of high-level abstraction,
we will now try to simulate a trivial computational platform, a
Turing Machine. In doing so we will address many key issues like
immutability, hash-tables, and, once again, recursion. Addition-
ally, we will become comfortable with the idea of interpreting one
platform within another; this ability to interpret is the key to ab-
straction in computation.

3.1.1 A Ruleset

A Turing Machine computes values based on an initial state, initial
values, and rules of transition from a given state and value to a new
state and value. The machine itself has a tape full of values and
a head which navigates the tape, moving either right of left one
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slot at any given time. Additionally, this head maintains an idea
of state, the mode in which it is observing a given value.

Together these primitive capabilities are enough to compute any
algorithm. The usual manipulation could be broken down into a se-
ries of steps, most likely represented as different states. Each state,
in turn, maintains a specific array of ways in which to manipulate
read values, and in which direction to move in each case.

All of this methodology is governed by a single ruleset. Hence
to simulate one, we will undoubtedly need a representation of these
rules. The structure in Figure 3.1 is one way, and the way which
we will choose, of representing such a set. We have already seen
use of lists as hash-tables, so this should not be a surprising design
decision.

Figure 3.1:

(let

rules
′(((A 0) (1 R H))

((A 1) (0 R H)))

. . . )

A ruleset like the one in Figure 3.1 serves to tell a simulation
in what way to behave given a certain input state. Hence together
with our earlier defined assoc function and an actual executor of
the matching behavior, this ruleset will handle all state logic.

3.1.2 Fundamental States

In order for our simulation to ever end we will need to designate a
specific state the halt-state. In our implementation, H will signal
the end of an algorithm. Additionally, the state in which our ma-
chine is initialized will not be the choice of the ruleset, and so we
choose to once again arbitrarily designate a specific state value for
this case. The state named A will be the initialization state of all
simulations.

Given these determined special states, we will need to set the
initial state and provide checking for the halt state. Hence our
recursive, rule-applying function needs to accept a state, as well as
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head position, rules, state, and tape values, and to check whether
it is in the halt state. If this is not the case, it will then apply the
current rule and repeat.

3.1.3 Mutability

The Lambda Calculus does not allow for mutation of values, thus
we will need to model this behavior by maintaining a modified value
upon each change, one that is the response of a given function.
Let’s work out an example of working around immutability in lists.

Figure 3.2:

(set

(lambda

(key val hash)

(map

(lambda

(item)

(if

(equal? (car item) key)

(cons key (cons val))

item))

hash)))

In this case we utilized map to cycle through the items of the
hash. Within the map we substituted for the value with the spec-
ified key. In our writing to the tape, we will need to use similar
tactics.

A Turing Machine writes a value to a specific slot of its tape,
namely, the slot upon which the head is currently resting. Within
our simulator, this slot is specified by the current index of the sim-
ulation. Hence, the writing function we will require is one designed
to write to a specific index of a tape.

In the function definition of Figure 3.3, we recurse with the tail
of the list until we reach the specified index, and we then perform
the substitution, ending recursion.
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Figure 3.3:

(letrec write-rule

(lambda (write-rule tape index rule)

(if

(null? tape)

tape

(if

(equal? index 0)

(cons (car rule) (cdr tape))

(cons (car tape) (write-rule (cdr tape) (− index 1) rule)))))

Above, we defined write-rule as a recursive function accepting
a tape, index, and rule. If we have run out of tape, we return the
empty tape; however, if we have tape left we take one of two paths
in evaluation. If the index to which we wish to write is zero, we
return the rule-specified value embedded into the list where the first
item previously would have resided. If, however, we are writing to
another index, we simply reduce the problem to writing to the item
one less in index on tape, excluding the first item.

3.1.4 The Event Loop

The simulation is based on the idea of following rule to rule until the
algorithm terminates. Hence rules are executed recursively until
the halt-state is reached. At this point, a final table is returned.
The iteration function is defined in Figure 3.4.

This iterate function definition utilized letrec to receive itself as
an argument. Its use of this value is subtly different from our past
use cases. In iterate, we pass the function itself as an argument to
another function, iterate-rule. For this reason, we can call iterate
and iterate-rule mutually recursive, that is, because iterate invokes
iterate-rule and iterate-rule in turn invokes iterate.

There are multiple dependencies to the function definition which
we have not yet defined. In the following section we will put them
all together with the iterate function and achieve our final goal of
simulation.
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Figure 3.4:

(letrec iterate (lambda

(iterate index rules state tape)

(if

(equal? state ′H)

tape

(iterate-rule

iterate

(cadr (assoc (list state index) rules))

rules

index

tape)))

3.1.5 A Simulator

All of the above principles can be combined to form a Turing Ma-
chine simulator. The definition of iterate is dependent upon a few
helper functions. First of all, there are a couple very basic short-
hands which are defined in Figure 3.5.

Figure 3.5:

(cadr (lambda (x) (car (cdr x))))

(caddr (lambda (x) (car (cdr (cdr x)))))

Now we move on to the functions provided for applying a rule
and for applying a shift in the head. To shift the index we simply
handle the case of right motion, i.e., ′R direction as an upward
shift, as well as any other cases.

The definition of move in Figure 3.6 is very simple in nature.
A current index and direction of motion are received as argument,
and a new index is then returned. If the direction is ′R then the
index will increase, but if it is not, i.e., if it is ′L, it will decrease.
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Figure 3.6:

(move (lambda

(index motion)

(if

(equal? motion ′R)

(+ 1 index)

(− 1 index))))

Furthermore, keeping in mind the earlier definition of subtraction
based on Lambda Calculus primitives, you will recall that subtract-
ing one from zero will result in zero. This behavior is convenient
in this case, avoid strange edge-case behavior.

Example usage of the move function would be as follows.

Figure 3.7:

(move 5 ′R) =⇒ 6

(move 3 ′L) =⇒ 2

Now we move on to a prior utilized function for the application
of a rule to the tape. The rule applier receives the earlier defined
iterate function as an argument, and then applies it to the moved
index, the ruleset, the rule-provided state, and the new tape.

This function consists only of basic manipulations of the rule
to parse out the modifications needing to be applied. With all of
the dependencies defined, we achieve the comprehensive definition
of a Turing Machine simulator shown in Figure 3.9.

3.1.6 Computation with Turing Machines

A half-adder as a Turing Ruleset would look like the Figure 3.10.
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Figure 3.8:

(iterate-rule (lambda

(iterate rule rules index tape)

(iterate

(move index (cadr rule))

rules

(caddr rule)

(write-rule tape index rule))))

Figure 3.9:

(let∗
((index 0)

(rules ′(((A 0) (1 R H))))

(state ′A)

(cadr (. . . ))

(caddr (. . . ))

(move (lambda

(index motion)

(. . . )

(iterate-rule (lambda

(iterate rule rules index tape)

(. . . )

(letrec write-rule (lambda

(write-rule tape index rule)

(. . . )

(letrec iterate (lambda

(iterate index rules state tape)

(. . . )

(write (iterate index rules state ′(0 0 0))))))
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Figure 3.10:

(let

rules
′(((A 0) (0 R Z))

((A 1) (1 R C))

((Z 0) (0 R H))

((Z 1) (1 L N))

((C 0) (1 L N))

((C 1) (0 L Y ))

((N 0) (0 R H))

((N 1) (0 R H))

((Y 0) (1 R H))

((Y 1) (1 R H)))

(write (iterate 0 rules ′A ′(0 0 0))))

3.2 Circuits

Circuits are quite different in nature from the previously discussed
Turing Machine. The main reason for this difference is that compo-
nents, analogous to the prior discussed rules, are dependent directly
upon each other, while in a Turing Machine a single processing unit
handled transitions between states.

3.2.1 Structure of Circuits

Our model of circuits will consist of two component types, (a) rela-
tional boxes, and (b) wires. Relational boxes are atomic relations
between circuit values, accepting input as electrical signals and out-
putting an electrical signal. Wires serve to connect these boxes to
each other, bearing these electrical signals in one of two sates. A
wire bearing current is said to have the boolean value true (t), but
a wire without current is said to be of the boolean value false (f).

Now, given these ideas of relational boxes and wires, we add
abstraction to reach a view of relational boxes as logical primi-
tives. For example, there may be a relational box named gateA
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which accepts a single wire and maps to the specified outputs in
Figure 3.11.

Figure 3.11:

(gateA #t) =⇒ #f

(gateA #f) =⇒ #t

Of course, this sort of truth table maintains an electrical inter-
pretation. Specifically, such a relational box would output current
when receiving no current, but would output no current if receiving
current.

The relational boxes we will take as primitive are similar to
our boolean operators already defined. We utilize an and-gate, an
or-gate, and a not-gate. The first two gates accept two wires as
input values and output to another wire a current value based on
their logical operation. Hence an and-gate accepting two current-
bearing wires will direct current to its output wire. A not-gate on
the other hand accepts a single wire for input value and outputs
the opposite value to another wire.

To begin our design of circuits, we design a relation constituent
of the boolean operators listed above as primitives.

Figure 3.12:

(half-adder

(lambda (a b)

(let∗
((s (and (or a b) (not (and a b))))

(r (and a b)))

(cons r (cons s nil)))))

The procedure in Figure 3.12 is known as a half-adder. Given
two bits as input, this procedure determines the added value, in-
cluding any carried value. Recall that our language was designed
not only for evaluation by machine, but for representation of ideas
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like the one presented above.

The methodology of the half-adder should be for the most part
apparent. Given input values named a and b, output values named
s and r need to be determined. s is true when one, but not both,
of the inputs is true, and r when both are true. Hence s represents
the first digit of a binary result, and r the second or carried value.

Let’s look at some examples of the behavior of a half-adder.

Figure 3.13:

(half-adder #f #f) =⇒ ′(#f #f)

(half-adder #f #t) =⇒ ′(#f #t)

(half-adder #t #f) =⇒ ′(#f #t)

(half-adder #t #t) =⇒ ′(#t #f)

If you are not familiar with the behavior of binary digits when
adding, note that the examples in Figure 3.13 exhibit the basics of
this behavior. If we were to represent current instead by either 1
or 0, we would achieve the more clearly binary behavior shown in
Figure 3.14.

Figure 3.14:

(half-adder 0 0) =⇒ ′(0 0)

(half-adder 0 1) =⇒ ′(0 1)

(half-adder 1 0) =⇒ ′(0 1)

(half-adder 1 1) =⇒ ′(1 0)

Hopefully this example has helped to illustrate the emergence
of relatively high- level ideas like arithmetic from basic controlled
flow of current. In the following sections we will attempt to depart
from a purely boolean-arithmetic driven outlook on circuits toward
a generic circuit structure definition process and simulator.
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3.2.2 Inter-Dependency

In our presentation of circuit design, we utilized let∗ to display
relations in order of their dependency. However, you will notice
that we repeated some computations without separating them out,
and more importantly that all computed values were statically set
to a primitive manipulation, never to be changed. Hence, our prior
definition does not accurately model an actual circuit; currents
cannot be updated and changes cannot propagate.

To better reflect the reality of circuit design, we will allow a
circuit structure to be defined holistically and symbolically, and for
this structure to be utilized to compute the values of individual
components. To say that our structure will be defined holistically
means that the entire circuit blueprint may be laid prior to any
computation, which brings us to our next point. Since definition
will be symbolic, using names rather than values, our relations can
be established between yet-to-be-defined values.

We will use a table like those which we have already seen for
our basic data- structure. The table will be built up with named
components, each being manipulations of the circuit. We begin
with a basic realization of this idea.

Figure 3.15:

(get-gate

(lambda

(name env)

(assoc name env)))

(set-gate

(lambda

(name value env)

(set name value env)))

The definitions in Figure 3.15 are simply aliases to the assoc
and set functions of regular hash-tables. We have yet to implement
the idea of gates as manipulations of the circuit. In order to do
this, we will need a clear means of applying a manipulation to a
given object. This idea is key to an object-oriented outlook on
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programming which we will discuss in the following.

3.2.3 Methods on Objects

There is a paradigm in programming known as object oriented
programming. Under this methodology, everything is an object
containing data and behavior, values and methods. We have al-
ready seen the functional architecture for associated values, that
is, a table or list of pairs. However, the key to this object- oriented
approach is that the methods are not regular functions but, rather,
maintain a context in which they operate. These methods of an
object should operate upon the object itself. To simulate this idea
in our language, we will make all methods a function of the object
in which they exist. Hence we can define a generic method applier
as follows.

Figure 3.16:

(method

(lambda

(obj mname)

((assoc mname obj) obj)))

Usage of this convenience function would then look like the
Figure 3.17, applying a named function to an object.

Figure 3.17:

(method person ′greet)

In this case person serves as an object, and greet as a named
method on that object. What does it mean to be an object? In the
case of our implementation, an object is merely a data-structure,
like any other table; however, the distinctive trait is the inclusion of
methods. Methods allow for the coupling of functions to a specific
data-set. In our example in Figure 3.17, a greet function is attached
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to the person, and easily called by name to perform some action
in the specific context of the person object.

We will utilize the concepts of object-oriented programming
(OOP) in our design of gates. A gate will be a table containing
some values and some methods. The only value will be named
value, the boolean value of the gate, and the methods will be named
get and set, performing the manipulations of the value which their
names would suggest. Hence, we would have a basic constructor of
a gate like the one in Figure 3.18.

Figure 3.18:

(make-gate

(lambda (value get set)

(list

(list ′value value nil)

(list ′get get nil)

(list ′set set nil)

nil)))

Given this structure, we redefine our gate getter and setter to
simplify interfacing with this structure as follows.

Notice that the main change was in making the get-gate func-
tion get the boolean value of a gate rather than the gate itself.
set-gate remained a function returning the mutated environment,
for the sake of setting up a circuit initially.

3.2.4 Child Object Definitions

A child of an object is one inheriting the structure of its parent and
either restricting or expanding the construction, value or method
interfaces. The function in Figure 3.20 is a child of the gate defi-
nition for constant-value gates.

As you were made to expect in our discussion of object-oriented
programming, both of the methods accept as their first parameter
the gate object itself. The getter and setter are very simple, based
around the value attached to the gate object. Building upon this
simple architecture, we will define a generic relational gate object.



54 Chapter 3. Simulating Logical Devices

Figure 3.19:

(get-gate

(lambda

(name env)

(let

gate (assoc name env)

((assoc ′get gate) gate env))))

(set-gate

(lambda

(name value env)

(set name value env)))

Figure 3.20:

(const-gate

(lambda

(value)

(make-gate

value

(lambda (obj env) (assoc ′value obj))

(lambda (obj value) (set ′value value obj)))))
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Figure 3.21:

(fn-gate

(lambda

(fn a b)

(make-gate

(lambda (a b) (fn a b))

(lambda (obj env)

((assoc ′value obj)

(get-gate a env)

(get-gate b env))

(lambda (obj value) obj))))

The definition in Figure 3.21 makes the value of the gate a
method as well. The getter then applies the value method to the
get-wrapped values of the two input components. The relation
tying together these input components is passed as the first argu-
ment to the fn-gate constructor. This is to say that when getting
the value of an fn-gate, the values upon which it depends will be
gotten as well in a sort of cascading dependency. These depen-
dencies will then be assessed based on the function specific to that
instance of fn-gate, maybe logical or, for example.

We now define, in turn, children of the fn-gate constructor easily
as follows.

Figure 3.22:

(or-gate (fn-gate (lambda (a b) (or a b))))

(and-gate (fn-gate (lambda (a b) (or a b))))

(not-gate (fn-gate (lambda (a b) (not b)) #f))
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3.2.5 A Simulator

Putting together all prior defined functions we have the simulator
in Figure 3.23.

Figure 3.23:

(let∗
((pairing

(lambda (a b) (. . . )))

(make-gate

(lambda (value get set) (. . . )))

(const-gate

(lambda (value) (. . . )))

(get-gate

(lambda (name env) (. . . )))

(set-gate

(lambda (name value env) (. . . )))

(fn-gate

(lambda (fn a b) (. . . )))

(or-gate (fn-gate (lambda (a b) (. . . ))))

(and-gate (fn-gate (lambda (a b) (. . . ))))

(not-gate (fn-gate (lambda (a b) (. . . )) #f)))

(. . . ))

3.2.6 Computation with Circuits

A half-adder utilizing our simulator would look like Figure 3.24.
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Figure 3.24:

(let∗
((env (set-gate ′a (const-gate #t) env))

(env (set-gate ′b (const-gate #t) env))

(env (set-gate ′1 (or-gate ′a ′b) env))

(env (set-gate ′2 (and-gate ′a ′b) env))

(env (set-gate ′3 (not-gate ′2) env))

(env (set-gate ′4 (and-gate ′1 ′3) env)))

(cons (get-gate ′4 env) (cons (get-gate ′2 env) nil)))
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Chapter 4

Mechanical
Interpretation of a
Language

The most important revelation in learning the art of programming
is that the language in which you work is completely arbitrary.
More specifically, the language in which you express concepts was
defined in terms of another language at some point. We have al-
ready made clear this concept in our definition of our symbolic lan-
guage. We now turn to the interpretation of one language within
another.

4.1 Lambda Calculus

The language which we will interpret is one with which we are
already familiar, Lambda Calculus. The Lambda Calculus has very
simple syntax and will thus not be too hard to interpret. Recall
the syntax, which is composed of the following expressions.

• A variable reference.

• A function definition of the form λab where a is a variable
reference and b is an expression.

• A function application of the form (a)b where a is an expres-
sion, as is b.

59
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Note that the generality of the third form, function application,
is what gives this syntax its description as the Untyped Lambda
Calculus. Since no qualification is given to the expression which
will be passed argument, this language is without types.

4.1.1 Lambda Calculus in S-Expressions

In expression the Lambda Calculus in S-Expressions, we will utilize
the quote function as well as the structure inherent of parenthetical
expressions in these expressions. Hence an example of an expres-
sion which could be evaluated is the one presented in Figure 4.1.

Figure 4.1:

′(lam x lam y (x) y)

4.1.2 An Evaluator

We define our evaluator pretty easily. Note that we will begin by
defining an apply function. This function accepts a function and
list of arguments, and then applies each of these arguments to a
lambda one by one.

Figure 4.2:

(define (apply-set fn args)

(if

(null? args)

fn

(apply-set (fn (car args)) (cdr args))))

Just like our definition of the syntax, our evaluator handles
variable reference, lambda definition, and function application.

Variable reference is a problem very easily solved. Atoms are
considered variable references, and hence serve as keys in accessing
values from the environment hash.
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Function definition is achieved by returning a lambda of a single
variable for expressions of the necessary form. Within the lambda,
the passed argument is appended to the environment with the ar-
gument name as its key. The function body is then evaluated.

Function application is the default case, thus we match against
the antecedent t. The applier apply-set is then called with the
evaluated form of the first argument and the evaluated arguments.
This architecture is an explicit choice not to opt for a lazy method
of evaluation.

Figure 4.3:

(evallam (lambda (evallam expr env)

(cond (((atom? expr) (assoc expr env))

((equal? (car expr) ′lam)

(lambda (x)

(evallam

(cddr expr)

(set (cadr expr) x env))))

((null? (cdr expr))

(evallam (car expr) env))

(#t

(apply-set

(evallam (car expr) env)

(map

(lambda (expr) (evallam expr env))

(cdr expr))))))))

4.1.3 Evaluation of Forms

An example of a form which could be evaluated is presented in
Figure 4.4.
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Figure 4.4:

′(lam x lam y ((x) y) 1)

4.2 Flat-Input Lambda Calculus

In the prior implementation of an interpreter, we took advantage
of the structure inherent to a nested S-Expression. This approach
was sufficient for our initial purposes; however, to separate our in-
terpreter from the details of its use within our Symbolic Language,
we will now allow its interpretation to apply to a flat list of atoms.
In order to represent the expression previously expressed by nested
S-Expressions, we will now utilize some symbols which will repre-
sent parenthetical expressions. The expression in Figure 4.5 is an
example of this new flat structure.

Figure 4.5:

′(lam x lam y < x > y)

Of course, this use of <> symbols would extend to any instance
of parentheses in our prior method.

With our new, less inherently structured approach, we will need
to provide an additional layer of parsing. Parsing will provide this
missing aspect of structure. Parsing parentheses is actually our
most complex algorithm yet attempted. We will take this algo-
rithm’s implementation as an opportunity to experiment with the
second style of programming we have yet to investigate, imperative
programming.

4.2.1 The Two Styles of Programming

There are two basic approaches to programming, derived from the
two original theories of computation. We have talked far more
about functional programming tactics in prior sections of this book,
leaving imperative programming on the sidelines. However, the
problem at hand is a great case study in the relation between im-
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perative and functional languages. We will begin with an imper-
ative implementation, and then port the code over to our current
language of choice.

4.2.2 Imperative Constructs

In our exploration of imperative programming, we will encounter
a few new operators, and utilize some new idioms. We will provide
a purely functional, that is, without mutation, implementation of
these constructs as well. In later chapters, we will be able to auto-
mate the utilization of these analogs identified.

4.2.3 Mutators

The main difference between imperative and purely functional pro-
gramming is the presence of mutability. In functional programs, a
value can be defined but not mutated; however, when taking the
imperative approach, values will often be set to a new value af-
ter their definition. The code in Figure 4.6 is an example of this
behavior.

Figure 4.6:

(define x 5)

(set! x (∗ 2 x))

=⇒ x = 10

The define operator serves to allocate a variable and initiate it
with a value. This variable, x, can then be accessed throughout the
procedure, and even mutated to equal a new value. In the example,
it was initiated as 5, but set! to 10.

In order to simulate mutation, we will need a means of ma-
nipulating an environment accessed and mutated by a myriad of
expressions. The pure means of achieving this, as we have previ-
ously discussed, is to call a function with a mutated duplicate of
the environment. In this case, that function would be defined to
use recursion.

Our recursive function will accept an environment and an ex-
pression address, i.e., index, as argument, and return either the
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result or a recursion with a mutated environment and at a differ-
ent expression address. This contraption is similar to a register
machine in many ways; an analog which we will further analyze
in later sections. What follows is an implementation using these
concepts of the prior imperative procedure.

Figure 4.7:

(letrec

main

(lambda (main env start)

(get (list (main (set ′x 5 env) (+ 1 start))

(main (set ′x (∗ 2 (assoc ′x env)) env) (+ 1 start))

(equal? (assoc ′x env) 5)) start))

. . . )

In Figure 4.7, note that we omitted the second equal?, because
only one of them bore an actual effect. We now move on to address
more complex issues of this impure approach.

In programming languages, scope refers to the region over which
a variable is accessible. The scoping of a variable is specified by the
define operator; hence the code in Figure 4.8 is another example of
this behavior.

Figure 4.8:

(define x 5)

((lambda (y)

(set! x y)) 12)

(equal? x 12)

=⇒ #t

Of note is the fact that the define occurred separate from any
function. This means that the defined variable will now take on
the global scope, being accessible and mutable from within any
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function.

In translating the definition and application of the lambda to
a purely functional procedure, we will provide the action of the
lambda as a prelude to the rest of the procedure. The invocation
of the lambda will require that we set the index to which the flow
of control should return after completion of the lambda. This takes
the form of a variable ret defined on the environment. All other
methods in Figure 4.9 are similar to those in prior procedures.

Figure 4.9:

(letrec

main

(lambda (main env start)

(get (list (main (set ′x (assoc ′y env) env) (assoc ′ret env))

(main (set ′x 5 env) (+ 1 start))

(main (set ′ret 3 (set ′y 12 env)) 0)

(equal? (assoc ′x env) 5)) start))

. . . )

In the Figure 4.9, our starting index would instead be 1, in
order to begin at the first line of the imperative program and avoid
the definition of the lambda used later on in the procedure.

If the define of the prior example had instead occurred within
a function definition, as in Figure 4.10, it would only be accessible
from within that function, or other functions defined within it.

Figure 4.10:

(define scope (lambda (x)

(define y x)))

(scope 5)

y

=⇒ The written variable, y, will be inaccessible.
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In Figure 4.10 we demonstrate definition with a single-function
scope. Thus the define is fulfilling the same role as let did in prior
programs. However, since define does not accept an expression
which it will govern, the example definition is of no effect. In the
following section we display a means of making use of this sort of
define statement.

To simulate this, we would need to add a sort of inner scope
to our function calls, exhibited in the form of jumping to another
instruction. We will, for the sake of simplicity, create an inner
environment, known as a closure, as a value on the outer, or normal,
environment. Then, prior to returning, we will clear the inner
environment by setting it to nil.

Of note is the fact that the define from within a closure trans-
lated into a set upon the inner environment. If we were aiming
to automate this process, we would instead maintain an image of
the original environment, and simply revert to that image after
execution of the function.

4.2.4 Multiple Expression Procedures

In our earlier, purely-functional programs, a procedure consisting of
multiple expressions would have been no use. Without side-effects,
only the final expression could bear any form of result. However,
now investigating an imperative approach, a procedure may utilize
multiple expressions, each contributing its own mutation to a final
effect. Figure 4.12 is an example of this in practice; the syntax
is simply a chain of expressions where an individual would have
previously existed.

Obviously, this example is of no utility. The desired function
could be just as easily achieved with a single expression. Useful ex-
amples, however, will present themselves in the following sections.

4.2.5 Loop Constructs

You will often see imperative programming avoiding use of recur-
sion. Rather, these programs will often iterate, mutating the en-
vironment in each step. For convenience in utilization of this ap-
proach, we define a function for constructing a range over which to
iterate.

The definition in Figure 4.13 is pretty straight-forward, much
like earlier function definitions. Note that the ranges are of the
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Figure 4.11:

(letrec

main

(lambda (main env start)

(get

(list

(let ∗ ((outer env)

(inner

(set ′y

(assoc ′x (assoc ′inner outer))

(assoc ′inner outer))

(outer (set ′inner inner outer)))

(main outer (+ 1 start)))

(main (set ′inner nil outer) (assoc ′ret outer))

(main

(set
′inner

(set ′x 5 (assoc ′inner env))

env)

(+ 1 start))

(main

(set ′ret 4 (set ′y 12 env))

0)

(assoc ′y env))

start))

. . . )
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Figure 4.12:

(define incr (lambda (x)

(define y (+ x 1))

y))

Figure 4.13:

(define range (lambda (x)

(if (equal? x 0)

nil

(cons (− x 1) (range (− x 1))))))

form 0, 1, ..., n-1. Here’s an example of this function being used
to calculate a factorial.

Figure 4.14:

(define fact (lambda (x)

(define ans 1)

(map (range x) (lambda (n)

(set! ans (∗ and (+ 1 n)))))

ans))

The starting value of the answer is 1, just like the sort of induc-
tive definitions we provided earlier in the book. The final answer is
then achieved by repeated multiplication performed on the previ-
ous ans. In the case of 5, for example, the accumulator ans takes
on the values presented in Figure 4.15.
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Figure 4.15:

1

=⇒ 1 ∗ 1 =⇒ 1

=⇒ 1 ∗ 2 =⇒ 2

=⇒ 2 ∗ 3 =⇒ 6

=⇒ 4 ∗ 6 =⇒ 24

=⇒ 5 ∗ 24 =⇒ 120

4.2.6 An Imperative Solution

Now we will jump right in to the non-trivial problem at hand,
restated below.

”Given a string of nested angle-bracket delimited groups, return
a nested list containing the contents of these groups. For example,
given the list of characters ′(a < bc > d) return ′(a(bc)d).”

Since we are taking an imperative approach, think, ”What is
the easily defined iterative process underlying this problem?” The
answer is clearly navigation of the string, and so we begin with
a range-based loop that will cycle through each character of the
string in order.

Figure 4.16:

(define parse (lambda (expr)

(map (range (length expr)) (lambda (i)

(define read (get expr i))

. . .

)))

Now we will need to describe a slightly more specific strategy
in performing the desired process.

• A parenthetical will be split from the string, with a segment,
although possibly an empty one, before and after it.
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• Once a parenthetical has been removed, we will need to re-
curse on these segments, i.e., the parenthetical and the por-
tion after it.

To make our way toward this implementation, we will define a
variable before that will hold the segment of the string occurring
prior to any parenthetical; a variable accum that will hold char-
acters that have been read in but whose destination has yet to be
determined, in this way serving as a cache; paren which will hold
a separated out parenthetical; and found which will be true if and
only if a parenthetical has been parsed.

Figure 4.17:

(define parse (lambda (expr)

(define before)

(define accum nil)

(define paren)

(define found #f)

(map (range (length expr)) (lambda (i)

(define read (get expr i))

. . .

)))

In order to parse out the parenthetical, however, we will need
an additional variable. This variable will aid us in parsing nested
parentheses to separate out the top-level parenthetical.

We will need to handle three obvious classes of characters in
our parsing of the parentheses:

• An opening parenthesis.

• A closing parenthesis.

• Any other character.

Additionally, the class of a character may be disregarded if we
have already parsed a top-level parenthetical. Its parsing will be
handled when we are ready to recurse. siven these additions of
case-handling, we insert if . . . else statements as in Figure 4.18.
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Figure 4.18:

(define parse (lambda (expr)

(define before)

(define accum nil)

(define paren)

(define found #f)

(define nested 0)

(map (range (length expr)) (lambda (i)

(define read (get expr i))

(if (and (equal? ′ < read) (not found))

[1. an opening parenthesis]

(if (and (equal? ′ > read) (not found))

[2. a closing parenthesis]

[3. any other character])))))

Of course, we will need to combine any separated out paren-
thetical with the components occurring before and after it to form
the designated response. Hence we provide the following return
statement in Figure 4.19.

Now we implement our nesting logic and the final algorithm.
Nesting will be handled based on one of the following occurrences.

• A once nested expression was just opened.

• An expression was just closed to be un-nested.

Parentheses occurred within a nested expression.
The first and second cases are handled under the condition-

als for their respective character classes, and in either class under
another nesting case, the third will be handled.

The last components missing from our implementation are the
building up of an accumulator and the setting of the various com-
ponents to the accumulator. We will implement these portions in
the code of Figure 4.20.

• When the parenthetical is closed, it is recursively parsed and
set to the paren variable.
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Figure 4.19:

(define parse (lambda (expr)

[variables . . . ]

(map (range (length expr)) (lambda (i)

[parsing . . . ])

(if paren

(concat (push before paren) (parse accum))

expr)))

• When a parenthetical is open, before receives the accumula-
tor value.

4.2.7 From Imperative to Functional

From the final implementation of our program in the previous sec-
tion we can derive a functional version. The differences will be
based on the following principles of functional programming:

• Values shall not be mutated.

• Control-flow shall not be explicit.

• Recursion is a fundamental idea.

Let’s begin by abiding to the second rule, inspired by the third.
The first thing you will notice is that all variables were made func-
tion arguments. This is because in a pure function, the only state
is provided by the arguments. Hence when recursing, we will need
to pass all required data to the function as argument.

Also of note is the fact that rather than maintain an index of
the list on which we are operating, we pass as argument to the
recursive call only subsequent characters, i.e., those which have yet
to be read. This is both logical in that our progress in navigating
the list is maintained, and idiomatic as you have seen in prior
programs written in our Symbolic Language.

The final portion of our program includes a definition of funparse .
This was merely for convenience, as funparse provides all of the
initialization values as argument to funparse.
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Figure 4.20:

(define parse (lambda (expr)

(define before)

(define accum nil)

(define paren)

(define found #f)

(define nested 0)

(map (range (length expr)) (lambda (i)

(define read (get expr i))

(if (and (equal? ′ < read) (not found))

((set! nested (+ 1 nested))

(if (equal? nested 1)

((set! before accum)

(set! accum nil))

(set accum (push accum read)))

(if (and (equal? ′ > read) (not found))

((set! nested (− 1 nested))

(if (equal? nested 0)

((set! found #t)

(set! paren (parse accum))

(set! accum nil))

(set accum (push accum read)))

(set accum (push accum read)))))

(if paren

(concat (push before paren) (parse accum))

expr)))
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Figure 4.21:

(define funparse (lambda

(expr nested before paren accum found)

(if (null? expr)

(if (not (null? paren))

(concat (push before paren) (funparse accum))

expr)

((let read (get expr 0)

(if (and (equal? read ′ <) (not found)))

((set! nested (+ 1 nested))

(if (equal? 1 nested)

((set! before accum)

(set! accum nil))

(set accum (push accum read))))

(if (and (equal? read ′ >) (not found)))

((set! nested (− 1 nested))

(if (equal? 0 nested)

((set! paren (funparse accum))

(set! found #t)

(set! accum nil))

(set accum (push accum read))))

(set accum (push accum read)))

(funparse (cdr expr) nested before paren accum found)))))

(define funparse (lambda (expr)

(funparse expr 0 ′() ′() ′() #f)))
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We now remove mutation to achieve implementation of the final
principle we listed. Our means of achieving this is by allowing
all values to be function arguments or expressions operating on
arguments.

You should begin to see how our rewrite of this algorithm reads
much more as an inductive definition than as a description of a
process. In the following section we will make this even more evi-
dent.

4.2.8 Adopting a Few Conventions

There are a few vestiges of our initial, imperative implementation
which we will now remove. Of note is the prior define keyword
that was appropriately substituted by letrec, with funparse then
being another definition within the letrec procedure.

4.2.9 The Parser

The parser now works as in Figure 4.24.

4.2.10 Evaluation

Combining the prior evaluator with the new addition of the parser,
we have the behavior you would have expected.
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Figure 4.22:

(define funparse (lambda (expr nested before paren accum found)

(if (null? expr)

(if (not (null? paren))

(concat (push before paren) (funparse accum))

expr)

(if (and (equal? ′ < (get expr 0)) (not found))

(if (equal? nested 0)

(funparse

(cdr expr) (+ nested 1)

accum paren

nil found)

(funparse

(cdr expr) (+ nested 1)

before paren

(push accum (car expr)) found))

(if (and (equal? ′ > (get expr 0)) (not found))

(if (equal? nested 1)

(funparse

(cdr expr) (− nested 1)

before (funparse accum)

nil #t)

(funparse

(cdr expr) (− nested 1)

before paren

(push accum (car expr)) found))

(funparse

(cdr expr) nested

before paren

(push accum (car expr)) found))))))

(define funparse (lambda (expr)

(funparse expr 0 ′() ′() ′() #f)))
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Figure 4.23:

(letrec funparse (lambda (funparse expr nested before paren accum found)

(let

funparse

(lambda (expr) (funparse expr 0 ′() ′() ′() #f))

(if (null? expr)

(if (null? paren)

expr

(concat (push before paren) (funparse accum)))

(if (and (equal? ′ < (car expr)) (not found))

(if (equal? nested 0)

(funparse

(cdr expr) (+ nested 1)

accum paren

nil found)

(funparse

(cdr expr) (+ nested 1)

before paren

(push accum (car expr)) found))

(if (and (equal? ′ > (car expr)) (not found))

(if (equal? nested 1)

(funparse

(cdr expr) (− nested 1)

before (funparse accum)

nil #t)

(funparse

(cdr expr) (− nested 1)

before paren

(push accum (car expr)) found))

(funparse

(cdr expr) nested

before paren

(push accum (car expr)) found)))))) . . . )
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Figure 4.24:

(letrec parse (lambda (. . . ) . . . )

(parse ′(< a > < b < c > > < d >)))

=⇒ ((a) (b (c)) (d))



Chapter 5

A Self-Hosted
Language

In the previous section, we successfully designed and implemented
an interpreter of the Lambda Calculus. This was a very interest-
ing problem to solve, because it allowed us to form a grammar of
expression from within our working language; then allowing us to
expand upon this grammar dynamically.

This achievement opens one up to question the limitations of
the embedded language. Specifically, we would be concerned with
a language sufficiently advanced to form an interpreter of itself,
and to then add features.

This phenomenon, a sort of singularity, is known in computa-
tion as a bootstrapped interpreter. In this section, we will aim to
bootstrap our symbolic language, and to then unlock the potential
of additional features.

5.1 The Grammar

The grammar of our symbolic language is slightly more complex
than the Lambda Calculus; however, it is luckily once again very
uniform. However, because we are now defining our grammar
within another language, we will need to abstract over the imple-
mentation details of token representation. That is to say, although
each string is a functional linked-list, we will consider them atomic
just as in prior grammar definitions.

We return briefly to our formal definition of a Symbolic Ex-

79
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pression from an earlier chapter; this time we will explicate the
characters allowed in an atom.

Figure 5.1:

< expr > ::= < sexpr > | < atom >

< sexpr > ::= (< list >)

< list > ::= < expr > | < expr > < expr >

< atom > ::= < char > | < atom > < char >

< char > ::= < letter > | < number > | < symbol >

< letter > ::= A | B | . . . | Z
< number > ::= 0 | 1 | . . . | 9
< symbol > ::= ∗ | + | − | / | # | < | > | | ? | !

Now, because we will be operating from within our Symbolic
Language, we will be able to abstract away the details of the gram-
mar. That is, S-Expressions will be represented as S-Expressions
when provided as input to the interpreter, as will atoms as atoms.

5.2 Self-Interpretaion

5.2.1 Lambda Forms

Recall from our definition of the Symbolic Language in terms of the
Lambda Calculus that there were some functions considered more
primitive to the language than others. We will expose these to the
language which we interpret. Our first task is to enable the Lambda
Calculus in these forms, not unlike in our earliest definition of the
language.

This is all fine; however, notice that the arguments to the func-
tion are evaluated all at once and passed to an applier-function. In
the next section, we will discuss a better approach to evaluation.

5.2.2 Laziness

This is not optimal, and does not allow for some nice features
enabled by ”laziness” in the interpreter. For this reason, we will



5.2. Self-Interpretaion 81

Figure 5.2:

(letrec eval (eval expr env)

(cond (((atom? expr) (assoc expr env))

((and

(atom? (car expr))

(equal? (car expr) ′lambda))

(lambda (x)

(eval

(caddr expr)

(set (cadr expr) x env))))

(#t (apply-set

(eval (car expr) env)

(map (lambda (x) (eval x env)) (cdr expr)))))) . . . )

change the application and variable reference components to reflect
a lazy approach to evaluation.

With very few changes we were able to implement this lazy ap-
proach. We simply made all arguments wrapped in a lambda before
their evaluation, and all variable references then reduce these wrap-
pings when appropriate. These small changes will make a world of
difference in the potential of expressiveness in our language.

The most evident of advantages is in the ability to branch execu-
tion, i.e., perform if statements, without evaluating both branches.
This later translates into the ability to recurse without invoking in-
finite recursion.

5.2.3 Numbers

In order to interpret numbers, we would need our atomic values to
be not so atomic. Rather than have atoms go against this nature,
we will delay implementation of arbitrary numbers. For now, we
will start with single digits.

The code in Figure 5.4 is just another eval function, this time
appending to the environment a prelude of definitions prior to call-
ing the usual eval function. The equivalencies presented are merely
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Figure 5.3:

(letrec eval (eval expr env)

(cond (((atom? expr) ((assoc expr env) nil))

((and

(atom? (car expr))

(equal? (car expr) ′lambda))

(lambda (x)

(eval

(caddr expr)

(set (cadr expr) x env))))

(#t (apply-set

(eval (car expr) env)

(map

(lambda (x)

(eval (list ′lambda ′() x) env))

(cdr expr)))))) . . . )

Figure 5.4:

(let eval-prelude (lambda (expr env)

(eval

expr

(concat

env
′((0 (0)) (1 (1)) (2 (2)) (3 (3)) (4 (4))

(5 (5)) (6 (6)) (7 (7)) (8 (8)) (9 (9)))))) . . . )
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from atom to singleton lists; no nature of numbers shows through.
Why singletons? Numbers are lists of digits more than they are
atomic values, after all, this is what allows us to perform arbitrary
arithmetic.

There is one aspect of the environment that we failed to address
in our setup of a prelude. Given the lazy nature of our interpreter
in which all variable access is reduction of a lambda, we will need
to lambda wrap each set value.

Figure 5.5:

(let lazy-set (lambda (env hash)

(concat

env

(map (lambda (pair)

(list

(car pair)

(lambda (z) (cadr pair))))

hash))))

The function in Figure 5.5 implements this lazy nature.
It will be our responsibility to implement arithmetic nature of

these numbers by means of a succ function. As we have already
shown, from this definition all else is possible.

The implementation in Figure 5.6 is pretty simple; it is a very
basic definition of the meaning of numbers in our decimal system.
It says, ”One follows zero; two follows one; etc.” Next, it communi-
cates the intricacies of place value. A number with a ones digit of
nine will increment to a ones digit zero, with a once higher leading
strand of digits. Finally, any other number with multiple digits
will result in a once larger ones digit.

We will now expand our eval-prelude to be more extensible and
to include the succ function.

5.2.4 Booleans and Predicates

Our implementation of Booleans will be quite simple. Recall the
use of atoms to symbolize numbers in the prior section, with the
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Figure 5.6:

(let succ (lambda (x)

(let singles ′((0 (1)) (1 (2))

(2 (3)) (3 (4))

(4 (5)) (5 (6))

(6 (7)) (7 (8))

(8 (9)) (9 (0 1)))

(cond (((null? (cdr x)) (assoc singles (car x)))

((equal? (car x) 9) (cons 0 (succ (cdr x))))

(#t (cons (succ (car x)) (cdr x))))))) . . . )

Figure 5.7:

(let∗
((set-arithmetic (lambda (env)

(set
′succ

(lambda (x) . . . )

env)))

(set-numerals (lambda (env)

(lazy-set

env
′((0 (0)) (1 (1)) (2 (2)) (3 (3)) (4 (4))

(5 (5)) (6 (6)) (7 (7)) (8 (8)) (9 (9))))))

(eval-prelude (lambda (expr env)

(eval

expr

(set-arithmetic (set-numerals env)))))) . . . )
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meaning of the numbers being more derived from the operations
we defined than from their representation. The same will hold
especially true for Booleans.

Our Booleans will be defined on the prelude by the names of t
and f , as you have come to expect. Now, rather than decide on an
arbitrary atom to which they will map, we will allow f to equal nil
and t to equal 1. Hence we would have a set-booleans definition to
append to let∗ that looks like Figure 5.8.

Figure 5.8:

(set-booleans (lambda (env)

(lazy-set env (list (list ′#t 1) (list ′#f nil)))))

Given these definitions of true and false, we will now define an if
function which follows very naturally from our native if function.

Figure 5.9:

(set-booleans (lambda (env)

(lazy-set

env

(list

. . .

(list
′if

(lambda (p t f)

(if (null? x) f t))))))))

5.2.5 List Primitives

The functions primitive to the manipulation of S-Expressions have
yet to be discussed. The following is a list of these primitives.

• car
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• cdr

• cons

• eq?

• null?

• atom?

These will be exposed to the interpreted language by means of
the prelude.

Figure 5.10:

(set-primitives (lambda (env)

(lazy-set

env

(list

(list ′car car)

(list ′cdr cdr)

(list ′cons cons)

(list ′eq? equal?)

(list ′null? null?)

(list ′atom? atom?)))))

5.2.6 Recursion

Now, as was alluded to earlier, we will provide a Y combinator
for the sake of recursion. Thanks to the lazy evaluation of our
interpreter, this will be an easily achieved task.

Although combinators are possible without lazy evaluation, a
function-based if statement is not; this is the key to our depen-
dence on laziness. In Figure 5.11, we set a Y-Combinator on the
prelude.
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Figure 5.11:

(set-Y (lambda (env)

(lazy-set

env

(list (list ′Y (lambda (f)

((lambda (x) (f (x x)))

(lambda (x) (f (x x))))))))))

5.2.7 Syntactic Sugars

In our definition of the language, we were sure to provide convenient
shorthands and general niceties. Hence, we will now do the same
within our interpreter.

Most of the syntactic constructs which we have yet to address
are forms of let. For this reason, we begin with an exposure of let
to the interpreter. let is merely syntactic sugar for reduction of a
lambda; hence we provide the implementation of let-forms seen in
Figure 5.12.

Note that this definition performs a rewrite of the S-Expression,
and then evaluates that new form. This is often referred to as a
macro. Macros can be exposed to the programmer of a language
to allow for this same extensibility of the language from within the
language.

Returning to our syntactic constructs, we similarly define let∗
forms. However, in this case, we will extract a function called
let-set to avoid messiness in our main interpreter definition.

let-set is recursively defined, but its implementation is very sim-
ilar to that of let. If there are definitions to be applied, let-set
creates a wrapping lambda and reduces it with the first definition.
Then, it recurses until there are no more definitions to apply. At
that time, it returns the expression.

Now, our last let-form is letrec. This syntax will be defined
using the Y- combinator, as alluded to earlier.

Once again we utilized a macro in our definition of a form; this
time simply applying the Y-Combinator prior to execution of let.
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Figure 5.12:

(letrec eval (eval expr env)

(cond (((atom? expr) ((assoc expr env) nil))

((equal? (car expr) ′lambda)

(lambda (x)

(eval

(caddr expr)

(set (cadr expr) x env))))

((equal? (car expr) ′let)

(eval

(list

(list
′lambda

(cadr expr)

(cadddr expr))

(caddr expr)) env))

(#t (apply-set

(eval (car expr) env)

(map

(lambda (x)

(eval (list ′lambda ′() x) env))

(cdr expr)))))) . . . )
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Figure 5.13:

(letrec let-set

(lambda (let-set defs expr)

(if

(null? defs)

expr

(list

(list
′lambda

(caar defs)

(let-set (cdr defs) expr))

(cadar defs))))

(letrec eval (eval expr env)

(cond (. . .

((equal? (car expr) ′let∗)
(eval (let-set (cadr expr) (caddr expr)) env))

(#t . . . ))) . . . ))
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Figure 5.14:

(letrec eval (eval expr env)

(cond (. . .

((equal? (car expr) ′letrec)

(eval

(list
′let

(cadr expr)

(list ′Y (caddr expr))

(cadddr expr))

env))

(#t . . . ))) . . . )

5.2.8 The Evaluator

The full evaluator is displayed in Figure 5.15 on page 91.

5.2.9 Conclusion

We have successfully defined an interpreter of the syntax of our
language. Even more interesting is the fact that we implemented
this interpreter from within the same language. By taking this
route, we were able to reuse, or snarf, some of the constructs of the
language very easily in our interpretation of it.

5.3 Language Expansion

Having successfully allowed our language to interpret itself, we are
now able to take it even farther. That is, we can begin to add
features to our language from within the language itself.

You have probably begun to notice the complexity of some of
our procedures. The nesting of definitions, amongst other things,
leads to an expression very hard for a human reader to parse. Ad-
ditionally, you might recall from an earlier section the utilization
of mutation in a procedure, attributed to an imperative approach,
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Figure 5.15:

(letrec let-set

(lambda (let-set defs expr)

(. . . ))

(letrec apply-set

(lambda (apply-set fn args)

(. . . ))

(letrec eval (lambda (eval expr env)

. . .

(let ∗ ((lazy-set (lambda (env hash)

(. . . )))

. . .

(eval-prelude (lambda (expr env)

(eval

expr

(set-arithmetic

. . .

(set-Y env))))))))))

(. . . ))))))
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as an alternative to this heavy nesting.

In this section, we will implement the beginnings of an array of
mutators allowing for the imperative model. We will begin with a
single, set function without scope. This means that the only way
this form will take effect is through its invocation at the top level.

5.3.1 Mathematical Background

An important idea in functional programming is that of the Monad.
Its name comes from its origins in Mathematics, more specifically
Category Theory. Monad refers to its ability to generate everything
from a single value. We, however, will be viewing the Monad in a
slightly different light. A Monad is a triple, consisting of a Functor,
and two transformations, ν and µ. We will take a moment to
unwrap this definition.

A Functor is a construct at a very high level of abstraction, we
will briefly define it in terms of familiar concepts. We begin with
the idea of a set and a relation on that same set. Of course, an
example would be the set of Natural Numbers. Then a relation on
that set could be <. This will be our first level of abstraction; that
is to say, this is our first example of objects and arrows between
them. An arrow could flow from 0 to 1, and then 1 to 2, et cetera,
ad infinitum.

Given a set and a relation on that set, we will consider the two
an object. An object could have multiple relations defined upon it
as well. Now, we imagine having two objects, each with a different
set and an analogous relation. For example, we might introduce the
rational numbers and their ordering. We then call some function
from the Natural Number object to the Rational Number object a
morphism so long as it preserves the ordering when mapping values
from the naturals to the rationals.

Next, we consider a category to be any collection of objects and
arrows between those objects. More specifically, a category consists
of objects, morphisms between those objects, and compositions of
those morphisms.

Finally, we consider a Functor to consist of a mapping of objects
and morphisms from one category to another. Returning to our
initial prompt, we consider a monad to be a map from one category
to another, along with two transformations.
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5.3.2 Monads in Computation

Given the previous explanation of Monads, it is probably still un-
clear how the structure would relate to computation. We will now
take a look at the traits of the transformations ν and µ. Let T
refer to the Functor of a given Monad. The transformation ν then
yields νx such that νx is a function from x to T (x). Similarly, the
transformation µ yields µx such that µx is a function from T (T (x))
to T (x). Thus, we can see that a Monad includes a way of adding
and taking away mappings by the Functor. If we consider a map
by the Functor to be a boxing of the value, we have that νx boxes
members of x, and that µx unboxes a box of boxes. In a similar
vein, we will refer to ν as unit and µ as join.

Now, one might be wondering why such a structure is valuable.
The reason is that Monads relate functions on a type of value to a
similar function on a boxed form of this type. Why are we inter-
ested in boxed values? One might box a value in a pair, with an
annotation as the other element. For example, one could define a
couting Monad which boxes by forming a tuple including the value
and 1 and unboxes a box of a box by adding together the number
labels as follows.

Figure 5.16:

T (x) = x × N
T (f : A → B)(a, n) = (f(a), n)

νx : x → T (x)

νx(x) = (x, 1)

µx : T (T (x)) → T (x)

µx((x, a), b) = (x, a+ b)

A similar construct, then, could be used to accumulate log infor-
mation, for example. Monads are of interest to us for their potential
in maintaining state. For this purpose, one could maintain state
as the second element of the tuple. However, for applications like
this one, programmers usually prefer to take a different outlook on
Monads, namely, to focus on unit and bind functions rather than
unit and join. The bind function can be defined in terms of join
quite simply.
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Figure 5.17:

bindx : T (A) → (A → T (B)) → T (B)

bindx(a, f) = join(T (f)(a))

As you can see in Figure 5.17, bind essentially elevates a func-
tion from unboxed bearing boxed to boxed bearing boxed. Its in-
nerworkings are as simple as getting the boxed morphism defined
by the category which accepts a function from A to T (B) and re-
turns a function from T (A) to T (T (B)). However, since we are
seeking a function onto T (B), we then unbox the return value with
join.

5.3.3 A New Eval

In our new eval function we will form a function which boxes our
previous implementation with an environment. Given the recursive
nature of the eval function, we will elevate our previous function
through a full rewrite of the function, rather than by unit or bind.
However, the reader might wish to keep these ideas in mind.

The code in Figure 5.18 is a rewrite of the eval function to
behave as this composite form. Note that macro forms behave the
same as before, but that all other forms return a list of expression
result and environment. Of course, these forms are also forced to
interface with the new return values of eval in order to bear the
same effect as before.

With this new eval function, we have a way of maintaining state
after mutation to the environment. Now we can define a function
which will accept a list of expressions and perform them one after
the other on a gradually mutating environment.

Hence we would achieve the behavior exhibited by the Fig-
ure 5.20.

5.3.4 Scope

So far we have for the most part left the environment alone, ex-
cepting for invocations of set!. However, we will now take a look at
scope and how it will be implemented through the various syntactic
forms.
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Figure 5.18:

(letrec eval (eval expr env)

(cond (((atom? expr) (list ((assoc expr env) nil) env))

((equal? (car expr) ′lambda)

(list

(lambda (x)

(eval

(caddr expr)

(set (cadr expr) x env)))

env)

((equal? (car expr) ′let)

(. . . ))

((equal? (car expr) ′letrec)

(. . . ))

((equal? (car expr) ′let∗)
(. . . ))

((equal? (car expr) ′set!)

(list

#t

(set

(cadr expr)

(car (eval (caddr expr) env))

env)))

(#t (list

(car (apply-set

(car (eval (car expr) env))

(map

(lambda (x)

(car (eval (list ′lambda ′() x) env)) (cdr expr)))))

env)))) . . . )
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Figure 5.19:

(letrec eval-seq (lambda (eval-seq exprs m)

(if

(null? exprs)

m

(eval-seq (cdr exprs) (eval (car exprs) (cadr m))))))

Figure 5.20:

(car (eval-seq ′((set! c 1) (c)))) =⇒ 1

The first prerequisite will be the existence of various scopes in
which a variable may be defined. For these to be present, we will
need sub-procedures with their own environments; that is, we will
need lambdas with bodies of multiple expressions.

Implementation of this feature is far from difficult. We may as
well embrace our early stages of an expanded language and pro-
vide as a prelude the eval-seq function. The code in Figure 5.21
combines our set function with the Y-Combinator to form an al-
ternative to let-rec. Note that we have modified the function def-
inition to return the full value-environment pair, rather than just
the value.

Figure 5.21:

(set! eval-seq (Y (lambda (eval-seq exprs m)

(if

(null? exprs)

m

(eval-seq (cdr exprs) (eval (car exprs) (cadr m)))))))
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Now we can utilize eval-seq from within the eval function; we
will call it from within the evaluation of a lambda.

Figure 5.22:

(set! eval-lambda (lambda (eval expr env)

(list

(lambda (x)

(eval-seq

(cddr expr)

(list

#t

(set (cadr expr) x env)))

env))

Note our use of cddr rather than caddr. This is the portion of
the implementation accounting for a sequence of expressions fol-
lowing the parameter list of a lambda definition. Additionally,
notice that the initial environment had to account for the full form
expected by eval-seq, i.e., a value-environment pair.

What are the ramifications of this straightforward foundation
for scope? Our use of eval-seq sufficed for maintenance of values
in the sequence of lambda body-expressions; however, it served to
form a sort of fork from the primary environment, one which never
reconnects with its origin. We are now faced with the problem of
implementing this scope-traversal despite the current forking.

In order to achieve this, we have already decided that a scope-
traversing function will be required. How would one be imple-
mented? Well, if you attempt to find the point at which two envi-
ronments share a border, it is clearly at the forming of a lambda.
Hence, we could define a function, say bubble-set!, on the lambda’s
environment which will set a value on the parent environment if the
variable has yet to be declared on the child.

There is one issue with this idea, however: the environment
value is not mutable. Hence, we cannot simply change a value on it.
Rather, we will need to perform a manipulation at the return-time
of the environment. To achieve this, we will need to modify the de-
fault clause of the evaluator: application. The code in Figure 5.23
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would take on the environment value of the forked environment.

Figure 5.23:

(#t (apply-set

(car (eval (car expr) env))

(map

(lambda (x)

(car (eval (list ′lambda ′() x) env)) (cdr expr))))))

This is not suitable, because you would then have all ideas of
scope be lost to a system of most recently set values. Instead,
we will need to harness the forked environment for manipulations
on the primary environment, and then discard it. The definition of
perform-bubbles in Figure 5.24 handles the updating of the primary
environment.

Of special note is the fact that rather than perform the value
updates on the environment manually, we allowed the evaluator to
perform them. This choice will prove helpful later when we devise
a more formal scoping system governed by rules based on variable
declaration.

We are now left only with the issue of simulating updates to the
primary environment from within the forked environment. This can
be achieved by some tweaks to variable access and setting.

The two definitions in Figure 5.25 serve to attempt either a get
or set on the forked environment, and, if the variable is undeclared,
perform that action on the bubble portion of the environment. Of
course, when appropriate, these bubbles will be reflected in the
primary environment.

Despite the elegance of the earlier definitions, our current foun-
dation will not allow them to be effective. Currently, we are cre-
ating the forked environment from the primary environment. This
means that changes to the primary environment will not be seen
as needing to bubble, but rather, as changes to local variables. To
resolve this issue, we will need to change our initial value for forked
environments.

The code in Figure 5.26 is quite simple. Our only change was
to specify the primary environment as the bubbling cache.

You may have picked up on the fact that since all set operations
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Figure 5.24:

(set! perform-bubbles (lambda (m env)

(let bubbles (assoc ′bubbles (cadr m))

(list

(car m)

(cadr

(eval-seq

(map (lambda (b) (cons ′set! b)) bubbles)

m))))))

. . .

(#t (perform-bubbles (apply-set

(car (eval (car expr) env))

(map

(lambda (x)

(car (eval (list ′lambda ′() x) env)) (cdr expr))))) env))
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Figure 5.25:

((atom? expr)

(if

(present? expr env)

(list ((assoc expr env) nil) env)

(list ((assoc expr (assoc ′bubble env)) nil) env)))

. . .

((equal? (car expr) ′set!)

(list

#t

(if

(present? expr env)

(set

(cadr expr)

(eval (caddr expr) env)

env)

(set
′bubble

(set

(cadr expr)

(eval (caddr expr) env)

(assoc ′bubble env))

env))))
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Figure 5.26:

(set! eval-lambda (lambda (eval expr env)

(list

(lambda (x)

(eval-seq

(cddr expr)

(list

#t

(set (cadr expr) x ′((bubble env)))))

env))

bubble if the variable is undeclared, set! will not suffice if we wish
to maintain various scopes. For this purpose, we will introduce a
define function. define will pin down a variable to a specific scope,
if you will. Its implementation is merely a reuse of our original,
naive set function.

Figure 5.27:

((equal? (car expr) ′define)

(list

#t

(set

(cadr expr)

(eval (caddr expr) env)

env)))

Together, define and set! provide us with the ability to specify
scope for variables which will be maintained across any sort of sub-
procedure. Our implementation of a bubbling set! was very slick,
and define was merely a reuse of our old set! function.
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5.4 Conclusion

We have defined a means of evaluating our language from within
the language itself. Once this was done, we were able to ex-
pand upon the language’s constructs, adding imperative features,
amongst other features. This is not merely an academic exercise,
but the way in which programming languages have evolved from
the time of the first computers. Henceforth, the grammar of our
language will be dynamic and fully extensible.


