
Melody: ​Function-Oriented Navigation of a Fileless Codebase
in Unison

CS279r/CS252r Final Paper
Charlie Colt-Simonds, Matt Neary, Eliza Scharfstein, Ary Swaminathan, and Sreya Vemuri

ABSTRACT
Programmers navigate codebases often and
for various reasons: to peer review code, to
understand existing code, or to add
something new. However, it can be
challenging and time-consuming to
understand functions with many
dependencies across a codebase [1]. We
conducted an exploratory study where 7
users navigated a codebase in Unison, a new
fileless functional programming language.
This study revealed a new challenge for
navigating fileless codebases: understanding
function dependencies [4] without the
artificial organizational structure that files
provide. Based on this insight, we designed
[5, 9] a new codebase manager for Unison,
called ​Melody​, to help Unison programmers
better understand function dependencies and
navigate a codebase. ​Melody​ displays all
function dependencies next to a function and
allows users to interactively click through
each of these functions, eliminating the
difficulties of understanding function
dependencies in a fileless codebase. In an
evaluative study with 10 participants [8],
Melody​ helped programmers successfully
debug a Unison function with several layers
of dependencies. However, many
participants still preferred the user
experience of the status quo codebase
manager, Unison Codebase Manager
(UCM), over ​Melody​. From our study
results, we present several insights into
fileless programming specifically, functional
programming more broadly, and integrated
development environments in general.

INTRODUCTION
Navigating a new codebase can be difficult,
as users run up against a variety of new
functions, dependencies, logic, syntax, and
styles. Understanding what occurs within a
codebase is important for error checking,
reviewing, and modifying a segment of code
[2]. Programmers encounter new codebases
often, as they engage in new projects and
peer review other peoples’ code. This
difficulty of understanding what is occuring
in a codebase can be exacerbated when
someone is using a new language or a
language they use less often, as they are
challenged to re-acquaint themselves not
only with a particular body of code, but also
with the syntax needed to construct it [3].

Most codebases are based on files, and thus
afford some automatic—if sometimes
arbitrary—organization of functions [1].
Meanwhile, a fileless codebase poses a
particular challenge: users still need to be
able to navigate through the code and
understand function dependencies [4], but
the setup lacks the organization that files
provide. As such, Unison, a new functional
programming language based on this fileless
paradigm, is a system that presents a
particular need within the broader design
space of codebase navigation.

Currently, access to Unison's codebase is
primarily through the Unison Codebase
Manager (UCM), a command-line
accessible tool that handles everything
except text editing, including type checking,

1

executing, browsing of the codebase,
refactoring, and publishing. ​ ​However, the
current solution limits the navigability of
large codebases [6], and relies heavily on
prior knowledge of functions and their role
within the codebase. The current solution
requires that users know what they want to
view and can search for it explicitly. It does
not clearly indicate links between functions
and it does not permit point-and-click
exploration of a code base. Accordingly, the
Unison community lacks a codebase
manager that adequately addresses users’
needs when it comes to navigating and
understanding a fileless codebase, as we will
discuss later in the paper.

In this paper, we aim to improve upon the
Unison codebase manager. In particular, a
Unison codebase manager should allow
users to access code and minimize
onboarding time, load time, and navigation
strain—all without resorting to the paradigm
of functions grouped into files.

As designers, we aimed to create a solution
that alleviates the traditional downfalls of
navigating a fileless codebase. In order to
better understand the issues that users might
run into when trying to understand existing
code and write new code in such a fileless
system, we ran an exploratory study [8] in
which 7 programmers each completed tasks
requiring them to understand and modify
existing function definitions in a Unison
codebase. Observations from this study led
to the design of ​Melody, ​an interactive
codebase manager for Unison that provides
functionality for visualizing function
dependencies and clickable exploration of a
Unison codebase. We offer ​Melody​ as an
alternative to the current Unison Codebase
Manager.

Melody ​keeps a dynamically updated
dependency graph that it uses to display to
users all dependencies for a given function.
Each function serves as a hyperlink, giving
users the ability to interactively click
through functions and navigate through
function definitions.

We conducted another controlled study with
10 participants to gain insight into how
Melody​ could support fileless codebase
navigation in Unison in comparison to
UCM. Participants were successful at using
Melody​ to debug a function with
dependencies across the codebase: 4 out of 5
participants successfully found the error in
the provided function in five minutes or less,
compared to 0 out of 5 participants with
UCM.

Participants enjoyed seeing all the
dependencies of a function listed next to it
and found the graphical user interface
provided by ​Melody​ intuitive to use, in
comparison to UCM. Some participants,
however, enjoyed the narrowly scoped view
of the codebase that UCM provides and
found this view of the codebase easier to
work with when focusing in on specific
functions and errors. While preference was
split amongst participants between UCM
and ​Melody​, users in both groups expressed
a need for codebase managers that aid users
in understanding user-generated functions,
understanding system-inherent functions,
and inferring type signatures of functions.
Thus, we suggest a solution that (1) includes
a dual-screen display of functions and their
dependencies, (2) links functions, including
built-in ones to their definitions, to their
definitions and dependencies, and (3)
displays type definition and function
formatting at the top of each function.

2

In summary, our contributions have both
academic and practical applications, which
include:

(1) Melody, ​a prototype for a codebase

manager for code navigation in
Unison, a fileless functional
programming language;

(2) two user studies which provide
insight into users’ usage of ​Melody​,
UCM, and Unison and functional
programming more broadly; and

(3) further recommendations for the
design of navigation tools for fileless
codebases, functional programming
languages, and codebases more
generally.

Overview of Unison
Unison is a new type of functional
programming language based on two big
ideas. First, the programmer’s experience of
coding need not stay the same it has always
been[10]. And second, by a related notion,
code should be represented in a
content-addressed datastore rather than
spread across files [10].

Unison is a language designed around these
ideas, and the Unison Codebase Manager
(UCM) is the software development toolkit
that is packaged with the Unison language
[10]. The developer experience in Unison is
unique. Developers interact with a codebase
using UCM, and to edit the source for
existing functions or to define new ones the
developer must pull a portion of the
codebase out into a scratch file which can
then be edited by any ordinary text editor.

We focus on Unison for a variety of reasons:
Firstly, our solution has practical benefits
for the Unison community in providing an

improved codebase manager as described
and evidenced in this paper. According to its
documentation, Unison as a language as a
variety of benefits, including that “it
eliminates builds and most dependency
conflicts, allows for easy dynamic
deployment of code, typed durable storage”
[10]. We hope that our contributions will
strengthen the usability and usage of Unison
so that users can easily access and harness
its benefits. Secondly, our user studies have
elicited broader insights about functional
programming and code base navigation,
which we discuss later in this paper.

RELATED WORK
The approach taken in this paper is similar
in concept to a number of other concurrent
research projects in the field of HCI. While
Melody​ is able to display a list of any
function’s dependencies by leveraging the
fileless nature of Unison, others have been
able to achieve this functionality in different
ways. SourceTrail​ ​is an open source
graphical code editor that can visualize the
structure of a codebase as a graph, but it
search through an entire codebase and
construct its own model of the dependencies
before it can display them visually [13].
Hoogle is a search engine that allows users
to search for Haskell libraries by type as
well [7, 14]. The closest thing to ​Melody
currently is an Elm-based Unison editor
created by Paul Chiusano [15]. It is
essentially a browser for functions, but is
implemented differently than the approach
taken here.

DESIGN FICTION
Sam and Riley are unison programmers who
co-maintain an API client for the slack API,
which many people use to implement slack
bots. The API client is written in Unison.

3

Sam has just updated the codebase and
added a function that allows users to specify
how the bot will respond to direct messages
called ​respond ​.

Riley wants to review this code before
updating the API to ensure that it works
properly before pushing it to the working
codebase. First, Riley wants to locate the
function, but isn’t sure what it’s called. She
opens up the command-line based UCM.
She knows there is a command that will list
all of the functions, but can’t remember
what it is, so she goes to her browser and
then to the Unison website, scouring a few
pages before finding that the command she
needs is the ​list ​ ​command.

She types ​list ​ into the UCM. A large,
long list of functions appears, and after
reviewing it for a for a minute, Riley finds
what she seems to be the correct function
based on its naming: ​respond ​.

An example of a response a user would get when
typing ​list​ ​in the terminal using UCM.

After searching online, Riley reviews the
Unison documentation again to find the
command that will allow her to view the
function. She types ​view ​into the
command line to see the ​respond
function. The function type definition and
the function itself displays in the terminal.

An example of a function accessed through the UCM
from the command line. Users see both type
definition and the function itself. This function, like
respond​,​ ​is dependent on other functions (splitAt)
and includes keywords (such as Nat).

Riley appreciates the type definition, but has
trouble understanding the function, given
that it seems to reference a bunch of other
functions (although there is no syntax
highlighting, so she has trouble telling what
is a function and what is a keyword. She
then has to retype each dependent function
in command line. She discovers that each of
those functions have their own
dependencies, and thus has to go through the
same ​list ​command into the command
line, and scroll repeatedly back and forth
through the dependencies to understand how
the ​respond ​function works. Reading
each function is arduous given the UI, and
re-typing and scrolling through them take a
long time.

Riley finally gets too frustrated with UCM
and complains to Sam, who introduces her
to ​Melody​. Right away, Riley sees that she
can search for functions as the top search
bar, decreasing the time spent looking
through a long list of them, or look through
their listed view in the home base of the
codebase if she didn’t know what a function
was called.

Riley locates ​response ​, clicks on it, and
the code for the function and its type
definition replaces the home screen. The
distinction between functions and keywords
is clearly highlighted differentially in the UI,

4

so Riley has a clue as to what might be
happening within it. The details of the
dependencies and operators are listed in full
in the right-hand window, such that Riley is
able to see all the functions at once and does
not have to arduously scroll and type back
and forth to access them. Riley figures out
what the function does, and feels far less
frustrated by the process given that the
functionality of the various components of
the codebase are logically connected in a
clear UI.

This fictional user story speaks to the
difficulties of navigating a codebase using
the existing UCM, which requires the usage
of tedious commands, demands prior
knowledge of functions, does not distinguish
between operators and functions, and
warrants a tedious scroll and type back that
does not grant users a clear linkage between
functions. ​Melody ​seeks to address these
problems through its home function screen,
search functionality, dual window display of
functions and its dependencies, clear syntax
highlighting, and linking of function
dependencies within a given functions,
allowing for easier and faster navigation and
comprehension.

USER STUDIES
We phased our studies into two parts:

(1) an exploratory study to discover
where user friction in performing
tasks understanding and using code
in Unison lie in order to create a
prototype for a new Unison codebase
manager

(2) a joint evaluative and exploratory
study to assess the experience of
users using ​Melody​ in order to
generate further design
recommendations and insights.

Participants
Participants were recruited from the
population of Harvard undergraduates who
had completed CS51, an introductory
functional programming course. We
enrolled a combined total of 17 participants,
2 of whom were female, and 9 of whom
were Computer Science concentrators.
Participants had a median of 4 years of
programming experience, and 1 year of
functional programming experience.

User Study 1 - Methods
We conducted an exploratory study in order
to understand the process that programmers
follow and the obstacles they face when
trying to navigate a Unison codebase to
understand existing code, modify function
definitions, and add new function definitions
to the codebase. We observed 7
programmers as they completed two tasks
related to understanding a function
definition in Unison and modifying the
behavior of a specified function. Participants
were first given an introduction to the syntax
of UCM and Vim, the primary
command-line accessible text editor for
Unison, such that unfamiliarity with either
would not be a factor in evaluating UCM as
a codebase manager, and then asked to
complete the following two tasks in UCM:

● Task 1: ​modify input parameters to a
distributed mergesort, dependent on
functions spread out across the
Unison codebase

● Task 2: ​explain the behavior of a
user-defined function without
dependencies spread out across the
Unison codebase.

5

Task 1 could be completed by adding a
single input parameter to the (recursive)
function and propagating the addition of this
parameter to each recursive call within this
function. Task 2 could be completed either
by observing the results of executing the
function with different parameters or by
close analysis of the function itself.

After each task, participants reported how
difficult they found navigation of the Unison
codebase to be using UCM, and suggested
features for a Unison codebase manager that
would improve their user experience and
ability to be successful in completing these
tasks. Feedback from participants was split
into three categories:

● Qualitative collection of data after
each task, regarding what features of
UCM aided and inhibited
participants in completing the given
task

● Comparison of UCM user experience
with traditional Interactive
Development Environments (IDE)
and text editors for both functional
and non-functional languages

● Follow-up questionnaire asking
participants to quantify (on a scale of
1-5, with 1 being the lowest)
usability of UCM and Unison, as
well as general comfort with
functional programming, imperative
programming, and the command
line.

User Study 1 - Results
While there is a split in sentiment regarding
how easy it is to use Unison, participants
agreed across there is room for
improvement. On a scale of 1-5, 3/7 rates
“Ease of use of Unison:” four, while 4/7
rated it a two or lower. Meanwhile, general

comfort with the command line was higher
on average than comfort with using the
command line in Unison, suggesting this
experience could be improved, with 5/7
rating their “comfort with the command
line” a four or a five, while 5/7 rated their
“comfort with command line in Unison” a
three or lower. This discrepancy could be
due to the newness of the language;
nevertheless, it indicates that the experience
for accessing Unison could be improved.

Users also noted specific needs and
obstacles in their user interviews.
Predominantly, participants called for an
improved reference following flow and
clearer distinction between code.

Trouble tracing functions and errors
Multiple users expressed difficulty tracing
the logic of the functions. In reference to the
first task, one participant said: “I tried to
look at it and figure out what it did and then
my brain exploded...it was hard to figure out
what the function was doing just by looking
at it.” This anecdote captures the difficulty
the user faced in understanding a function
with a multitude of dependencies.

One user noted the interconnectivity of
functional programming, where “every line
is connected, so it’s harder to trace errors
back.” Another participant spoke to the
difficulty of navigating errors through the
command line, where tracing errors back
was difficult, saying “When I called merge,
it was passing a partially evaluated
function...The error wasn’t exactly clear to
me…” The participant described discovering
this error by scrolling up through the code to
see the output of the called function. This
friction speaks to a need to type check
and/or have easy navigation amongst
interdependent functions.

6

Need for syntax highlighting
Many users also called for syntax
highlighting within the code to make reading
it easier. One participant noted the
importance of syntax highlighting,
particularly when an individual is unfamiliar
with the code or language: “for a new
programming language, it’s hard to see what
are keywords and what the flow is if there’s
no highlighting.” Another said that,“Syntax
highlighting and variable name highlighting
is good...very much in the bare minimum.”
This call for syntax highlighting speaks to
the broader desire to make reading code
easier, removing the burden of some of the
work of comprehension from the user.

Prototype
With insights from the first user study, we
built ​Melody, ​an alternate code base
manager to UCM.

Melody​ brings the basic affordances of
hypertext to bear in the navigation of a
Unison codebase. Like hypertext, Unison is
built on a non-hierarchical web of
interconnected text. But in the case of
Unison, the text is code and links are a
semantic link from a function reference to
the function source.

Under the hood, ​Melody​ interacts with a
Unison codebase over the command-line
interface. However, the ​Melody​ backend
encapsulates its functionality in an HTTP
API that is then called from the frontend.
The backend is implemented as a node.js
webserver, and the frontend is a web app
built with React. The frontend retrieves the
set of functions in the codebase from the
backend and loads their source code.

With the source code of all functions loaded
on the frontend, ​Melody​ tokenizes the code,
identifies the function references, and

creates a directed acyclic graph of
dependencies across functions. Finally, the
user is able to search across functions and
click into the details for each of them. A
function is presented with its source
alongside all its dependencies, enumerated
recursively in a topological ordering.

The hope is that this hypertextual interface
to Unison codebases will retrieve some of
the patterns of code navigation that come
more naturally to file-based programming
languages, and perhaps point the way
forward novel and productive interfaces to
codebases more broadly.

User Study 2 - Methods
We conducted a joint evaluative and
exploratory study to evaluate the design of
Melody​. We observed 10 programmers as
they completed two tasks using either
Melody​ or UCM, involving explaining the
behavior of a "mystery" function and finding
the bug in a specified function. Specifically,
participants were asked to:

● Task 1: ​Identify the behavior of the
function ​mystery ​, which splits a
list in half

● Task 2: ​Find the error in the function
range ​, which should return the
range of an integer list

All participants were first given an
introduction to ​Melody ​and then asked to
complete Task 1 using ​Melody​. Then,
participants were randomly selected to either
use ​Melody​ or UCM for Task 2 (those who
were tasked with using UCM were then
given an introduction to UCM).

7

Both tasks leveraged the nature of Unison's
filelesness and had several layers of
dependencies spread out across the
codebase. Task 1 was designed as a
warm-up exercise to familiarize users with
navigating a Unison codebase. Task 2 was
designed as an exercise to study user
preferences in navigating many layers of
function dependencies. Similar to our first
user study, we collected several types of
data from participants after each task:

● Qualitative feedback regarding what
features of ​Melody​ users thought
were helpful in completing the task
and what features users would have
liked to see in ​Melody

● Qualitative and quantitative
comparison of ​Melody​ user

experience with UCM (for those that
used both) and other IDEs

● Time taken to complete each task,
starting after the explanation of the
task, and ending when the participant
correctly identifies the function
behavior (task 1) or error (task 2)

● Follow-up questionnaire asking
participants to quantify (on a scale of
1-5, with 1 being the lowest)
usability, ease of navigation, and
comprehensibility of functions in
Melody​ and UCM, as well as general
comfort with the command line,
functional programming, and type
definitions

User Study 2- Results
While there are no statistically significant
results from this study due to small sample

8

size, and some users indicated preference for
UCM over ​Melody​, we draw three key
insights from the study to help us suggest a
modified version of ​Melody​: (1) many users
appreciated the simultaneous viewing of
their functions and the dependencies, (2)
users overwhelmingly noted benefiting from
type definitions to help comprehend the
functions, and (3) users wanted clear
reference following for built-in functions to
supplement the existing user-defined
referenced following.

User Generated Functions Dependency
Viewing- Linking and Dual-Screen View
Multiple users mentioned that they
appreciated that you could view the function
and its dependencies easily through the
dual-screen view and linked organization of
the functions. One user summed up their
satisfaction after clicking on a function by
saying,“Oh, wow! That’s all the
dependencies. That’s sick!” The same user
praised the dual-screen layout that prevented
him from having to scroll “back-and-forth”
between the function and its dependency,
saying in discussing the second task: “This
definitely made my debugging experience a
lot easier...if these were just a massive, 400
line sublime text...and I had to figure out
what was wrong with range, and min max
was at the top and range was at the bottom,
scrolling back and forth, I’d probably get
pretty frustrated.” Another user praised this
aspect of ​Melody​: “You can quickly go to
the relevant functions instead of having to
scroll.”

Similarly, others users noted more generally
that they appreciated the listing of
dependencies, with one user stating, “It’s
helpful, it lists the dependencies of
everything,” and another commenting on the
straightforwardness of the homescreen: “this
home screen, where it’s all in your face-- I

kind of like that. I don’t like when they’re
sorted into three billion categories and you
have to figure out the category the function
you want is in.”

Other users commented on the linking
aspect of ​Melody​: “Being able to link around
and see all of the functions was also super
cool;” “I like how you can just click and get
all the dependencies, that’s pretty cool.”

One additional participant summed these
findings up by stating: “It’s pretty easy to
see which things are functions, which things
aren’t; search is pretty intuitive; clicking on
functions to see more detail is intuitive.” At
least 7/10 of participants commented on the
dependency viewing nature of ​Melody​. In
summary, users appreciated that they could
easily see the presence of functions and how
functions related to each other through the
dual-window display of dependencies and
the linking of functions.

Built-In Functions’ Definitions
Other users expressed interest in having
similar facilities for built-in functions and
constructors as for user-generated functions,
with one user saying ““It would have been
nice to click into built-ins”A variety of users
mentioned a difficulty in navigating some of
the syntax with one noting that they would
have benefited from “Defining what ​go
means” and more generally, “definitions of
operators, especially if it’s a new language.”
And another mentioning that they “Didn’t
understand use nat.”

One user even suggested having “English
descriptions of what the functions do.”
While we do not think that would
necessarily be implementable in ​Melody​,
this suggestion implies difficulty in
understanding the range of functions within
Melody​.

9

In sum, this evidence supports expanding
the existing framework for user-generated
function dependency viewing to built-in
functions, and implementing a similar
support paradigm for constructors.

Type Definition
Listed above each function was the type
definition, which is not unique to ​Melody
but multiple users’ appreciation of its
presence is notable. At least 6 users
commented on the presence of type
definition in ​Melody​. Multiple explicitly
stated that it was helpful: “Having the type
signature was crucial;” “The first thing I
noticed was that you have all these type
definitions for all your functions here;”
“Having the type hint made it intuitive;”
“The signature helps a lot.” Others described
using it in their thought process: noting that
“It takes in a list” and outputs “two different
lists;” and that they began by “Looking at
the header and deciding what the
input/output structures are.”

These results suggest that any solution must
incorporate type definitions prominently, as
users found them helpful in deciphering
what a function was doing. One user
extended this guiding framework to suggest
that an “Outline at the top that would show
an example layout for a function would be
helpful.”

While there are no statistically significant
results from this study due to small sample
size, we highlight three representative user
stories from our study to understand the
range of experiences in our study:

● User 1 extensively uses the
command-line for class projects and
primarily uses command-line
accessible text editors to program.

● User 2 primarily uses an IDE or text
editor application, such as Sublime
Text, Atom, or IntelliJ, for
programming tasks.

● User 3: User 3 has very little
functional programming experience
and does not learn new programming
languages often, and gets tripped up
on the unfamiliar syntax.

While we did not notice convergent trends
within a single group, we want to call out
that this study included a range of
experiences. Participants can be grouped by
their speed of task completion as well.
Because all users completed task 1 in
Melody​, we compare their speed in the first
task to their speed of completion in the
second task, when the code base managers
used diverged ​[Fig. 1]. ​Participants are
sorted by the speed of completion of the first
task into ​fastest​ (0-1 minute); ​fast ​(1-2
minutes); ​slow​ (2-3 minutes) and ​slowest
(4+ minutes).

Figure 1​. Sorted by their speed in task 1 (fastest
being those who completed it in under 1 minute, and
slowest being those who took more than 4 minutes to
complete the task), we measure the number of
participants who took 0-3 minutes, 3-6 minutes, 6-9
minutes, and 9+ minutes to complete task 2.

Figure 1 demonstrates that generally, users
who are fast in the first task are fast in the
second task.

10

Figure 2​. This histogram depicts the distribution of
time spent to find the bug and describe it in task 2. In
this task, 5 participants completed the task in Melody
and 5 in UCM, so the time distribution is delineated
by code base manager used.

The fastest completion time occurred for
users in ​Melody​, although these users also
performed within the “fast” or “fastest”
groups for the first tasks. Meanwhile, 3
participants within the UCM group
performed within the 3-6 minutes group,
with ⅔ of them within the fastest group for
the first task. These results suggest that time
of completion is likely associated with
general programming speed, as opposed to
usage of UCM v. ​Melody​.

Thus, we do not have conclusive trends as to
whether ​Melody​ actually increases the speed
of completion for most users, and further
study would be required here. Future
iterations of this project would have a better
control to account for this inconclusivity, as
discussed in study limitations. Further, not
all users who were exposed to both code
managers appreciated ​Melody​ over UCM,
with one noting that in UCM it is “Nice to
only see what I need to see.”

Thus, ​Melody​ would benefit from further
iteration based on the recommendations at
the beginning of the section. In addition, as
discussed in the following section, we would
hope to test these iterated designs in a more
controlled user study in the future in order to

more definitively quantify the impact of
Melody​ on Unison users.

Study Limitations
Our studies have a few limitations due to
small sample size of participants and lack of
access to the Unison community that we
now discuss. First, although we observed
that the fastest task completion times
occurred for those using ​Melody​ rather than
UCM, we cannot conclude anything
statistically significant about the data
because our study is comprised of only 10
participants. Differences in completion
times might be related to different levels of
programming experience, functional
programming experience, and command-line
comfort.

Second, due to only having 10 users in our
study, we chose to design our study such
that all users first used ​Melody​. We chose to
use this design rather than randomly select
between UCM and ​Melody​ for both tasks in
order to have more users overall that used
Melody​ so that we could obtain as much
feedback as possible. Thus, a limitation of
our round 2 user study is that we do not have
a true control group. In future studies with
more participants, we would have two
pairings: (Task 1 - UCM, Task 2 - ​Melody​),
(Task 1 - ​Melody​, Task 2 - UCM) and
randomly assign one of these pairs to each
participant in order to have an appropriate
control group.

Third, participants in both studies had only
introductory knowledge of Unison and often
had difficulty separating their user
experience of understanding Unison syntax
with their user experience of using a Unison
codebase manager to navigate a Unison
codebase. In the intended use case,
programmers using this tool will have some

11

familiarity with the Unison programming
language. It might be the case that Unison
programmers find ​Melody​ more useful for
navigating a codebase than UCM.

Lastly, the tasks we designed present a
limitation in our user studies. Task 2, which
required users to either use ​Melody​ or UCM,
had a single error in one dependency. A few
users who preferred UCM over ​Melody
expressed that UCM was effective for
narrowing down the source of an error to a
single function. It might be the case, then,
that when presented with a task that has
interrelated errors across several function
dependencies, which is a common
occurrence in real programming tasks, users
prefer ​Melody​ over UCM due to its ability to
display all these function dependencies at
once. In fact, at least one participant who
preferred UCM over ​Melody​ stated that if
the given function in Task 2 had been more
complex, they might have preferred an
alternate codebase manager.

DISCUSSION AND FUTURE WORK

As described, we carried out this study in
two phases: (1) an exploratory study to
discover where user friction in performing
tasks understanding and using code in
Unison lie, and (2) a joint evaluative and
exploratory study to assess the design and
effectiveness of ​Melody​, a proposed
improvement to UCM. Through these user
studies, we gained an understanding of how
to better help the Unison community, as well
as how to generalize our findings to aid
functional programming and codebase
management more broadly.

Study Insights

Results from our study show that many of
the aspects of ​Melody​ that users enjoy are
not unique to Unison. First, ​Melody​ has
applications in the functional programming
space. Many users expressed the difficulty
of understanding circular functional
dependencies and input or return types in
functional programming languages. ​Melody
could, thus, be extended to other functional
programming languages to allow
programmers to better visualize function
dependencies and the type signatures of each
function. Second, ​Melody​ has applications to
codebase management and interactive
development environments, in general.
During user studies, several users expressed
that they liked not having to scroll around
IDEs to search for dependent function
definitions or open up several tabs to
simultaneously view multiple function
dependencies. ​Melody​ provides a solution to
these issues by allowing users to
simultaneously view all function
dependencies in one window. While ​Melody
was initially created for Unison, the concept
of creating a dependency graph that is
simultaneously viewable is generalizable to
functional and non-functional programming.
Additionally, below we present other, more
general applications of ​Melody​ to functional
programming and codebase management.

Applications to Functional Programming

Functional programming languages have
two major language constructs: functions
and type constructors. The paradigm
employed by ​Melody​, of reference-following
and displaying function dependencies, can
easily be extended to type constructors.
Additionally, although Unison does not have
modules or classes, the obviously

12

hierarchical nature of these features suggests
the possibility of incorporating their
navigation as a feature of ​Melody​.

We previously observed the evidence for
improving ​Melody​ to support users that
enjoy programming with IDEs and GUIs.
Programs written in a functional style lend
themselves to various representations such
as petri nets or monoidal categories, which
in turn can be given a natural graphical
syntax as process diagrams or string
diagrams. It may be worthwhile to follow up
with study participants and obtain their
feedback on using graphical tools for
interacting with functional code, for
example Statebox [11]. Unison is
well-suited for extensions to visualization
due to focus on purely functional
dependencies, and future development of
Melody​ could include diagrammatic
representations of its dependency views to
help users better understand the
relationships expressed by functions and
types in the codebase.

Application to Codebase Management

The Unison codebase has a non-trivial
structural compatibility with git due to its
hash tree structure [12]. As a result, it can be
used naively in conjunction with version
control software while avoiding conflicts.
Hence, we expect that any git visualization
tools are broadly applicable in their design
to the purpose of interacting with the Unison
codebase, and additional user studies on
these tools could inspire additional
functionality for ​Melody​, or possibly direct
integration into the ​Melody​ web view.

Limits to Application

Melody would not work well with
programming languages where namespace is
is dependent on modules or files, or where
there is a lack of type signatures. Even in
functional languages that appear more likely
candidates for adoption, existing codebases
might be fundamentally incompatible or
impractical to achieve compatibility.
Intuitively, functional programming
languages that are closer to Unison will be
best for ​Melody​, but a practical effort toward
the goal of bringing compatibility with more
functional languages will require a
meaningful study and rigorous
understanding of the features that are
required for a language (or subset of a
language) to be sufficiently similar to
Unison.

CONCLUSION

We developed ​Melody​, an interactive
Unison codebase manager to help
programmers view function dependencies
and navigate a Unison codebase. We
recommend a solution that incorporates (1)
dual-screen display of functions and their
dependencies, (2) linking of functions,
including built-in ones to their definitions,
and (3) prominently displaying type
definition and function formatting at the top
of each function. In order to further this
work, we would iterate on ​Melody, ​and
perform further user studies with wider
sample sizes and tighter controls to further
validate the effectivity of the code base
manager in this new form.

As it stands, our study shows that
programmers can use ​Melody​ to successfully
understand and modify existing codebases.
Our results are inconclusive as to whether
Melody​ is more effective than the Unison

13

Codebase Manager (UCM), but we believe
that after further iterations, tools like ​Melody
have the potential to enable Unison
programmers to more quickly and
effectively navigate a codebase.
Furthermore, we believe that tools like

Melody​ may ultimately have the potential to
help programmers understand code and its
relationships more broadly.

14

REFERENCES

1. ​Edward McCormick, Kris De Volder,
JQuery: finding your way through tangled
code, Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented
programming systems, languages, and
applications, October 24-28, 2004,
Vancouver, BC, CANADA

2. Button, G., Sharrock, W. Occasioned
Practices in the Work of Software
Engineers. In Jirotka, M., and Goguen, A.
(eds.) Requirements Engineering. Social and
Technical Issues. Academic Press, London,
1994.

3. ​Essi Lahtinen , Kirsti Ala-Mutka ,
Hannu-Matti Järvinen, A study of the
difficulties of novice programmers,
Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in
computer science education, June 27-29,
2005, Caparica, Portugal

4. ​Karl J. Ottenstein , Linda M. Ottenstein,
The program dependence graph in a
software development environment, ACM
SIGPLAN Notices, v.19 n.5, p.177-184,
May 1984 ​ [doi> ​10.1145/390011.808263 ​]

5. Jakob Nielsen, Noncommand user
interfaces, Communications of the ACM,
v.36 n.4, p.83-99, April 1993

6. ​Nichols, D.M., Thomson, K. & Yeates,
S.A. (2001) ​Usability and open-source
software development
Proceedings of the Symposium on Computer
Human Interaction ​, (eds.) Kemp, E.,
Phillips, C., Kinshuk & Haynes, J., 49-54.
Palmerston North, New Zealand. ACM
SIGCHI New Zealand.

7. N. Mitchell, Hoogle overview, The
Monad. Reader, 12 (2008), pp. 27-35

8. ​Andrew Faulring, Brad A. Myers, Yaad
Oren, Keren Rotenberg, "A case study of
using HCI methods to improve tools for
programmers", ​Cooperative and Human
Aspects of Software Engineering (CHASE)
2012 5th International Workshop on ​, pp.
37-39, 2012.

9. Chen Xiajian, Wang Danli, Wang
Hongan, "Design and implementation of a
graphical programming tool for children",
Computer Science and Automation
Engineering (CSAE) 2011 IEEE
International Conference on ​, vol. 4, pp.
572-576, 2011.

10. “The Unison Language.” Accessed
December 15, 2019.
https://www.unisonweb.org/.

11. Statebox Team: ​The Mathematical
Specification of the Statebox Language ​.
Available at http://arxiv.org/
abs/1906.07629.

12. Wiegley, John. ​Git from the Bottom Up ​,
jwiegley.github.io/git-from-the-bottom-up/.

13. “Sourcetrail - The Open-Source
Cross-Platform Source Explorer.” Accessed
December 15, 2019.
https://www.sourcetrail.com/ ​.

14. “Hoogle.” Accessed December 15, 2019.
https://hoogle.haskell.org/.

15. “Paul Chiusano: Unison Update 0.”
Accessed December 15, 2019.
https://pchiusano.github.io/2015-01-30/unis
on-update0.html.

15

