
An Extension of IRR for Random Variables

Consider a set of risky assets held in a portfolio according to predetermined fractions where assets yield a
return on a fixed horizon. When any of the assets reaches maturity, the money coming back (represented by
a random variable) will be reinvested into a portfolio of the same constituency.

We model this scenario as a branching process defined by the series Xn, visualized below.
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We define IRR in this context to be the long-term growth rate of the series

Ia = lim
N→∞

N
√
XN

As shown above, branching happens in twos, with one branch getting weight fA and the other fB .
Similarly, the returns realized in each branch are modeled by infinite series of i.i.d. random variables Ai and
Bi. The first branch will yield a return in the second period and the other branch in the third period, so
we say that tA = 2 and tB = 3. In the interest of generality, consider the case in which the same behavior
is exhibited for an arbitrary number of branches represented by the set S = {A,B, . . . } with fR and tR for
R ∈ S, and with each branch taking on the series of return values Ri in the course of resampling.

1



The growth rate Ia is such that, with T = max{tR : R ∈ S},

ITa = lim
N→∞

N

√√√√(∑
R∈S

R1fRI
T−tR
a

)
. . .

(∑
R∈S

RNfRI
T−tR
a

)
This is a natural extension of the conventional IRR, although it looks a bit different. Here, the recursive

formulation of IRR is used. The formula is recursive in the sense that the reinvestment rate is defined in
terms of the distribution of outcomes, which are themselves defined in terms of reinvestment rate. The final
answer will be the fixed point of the expression.

Now we turn to computing Ia. Our first move is to drop into log-space:

Ia = exp

{
1

T
lim

N→∞

1

N

[(
log
∑
R∈S

R1fRI
T−tR
a

)
+ . . .+

(
log
∑
R∈S

RNfRI
T−tR
a

)]}
Then, thanks to the Law of Large Numbers, the limit converges

Ia = exp

{
1

T
E log

∑
R∈S

R1fRI
T−tR
a

}
The actual value of Ia given random variables R ∈ S of known distributions and fixed fR and tR can be
solved for as the fixed point of the expression—that is, for f(I) as follows:

f(I) = exp

{
1

T
E log

∑
R∈S

R1fRI
T−tR

}
You’ll find that f(f(f(· · · f(1) · · · ))) → Ia.

This formulation of IRR has some nice properties. Specifically, when the values of the return variables
are certain it reduces to conventional IRR. And when they are uncertain but all have the same periodicity,
it reduces to the geometric mean. Since both are measures of growth rate, their synthesis goes a long way
in validating the result presented here.
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